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Rotational machinery is more prone to failure because of 
the availability of rolling-element bearings working under 
aggressive environments. It has been estimated that 40 to 
50% of machinery failures can be attributed to these bear-
ings Zhuang et  al. (2021). Therefore, an accurate RUL 
estimation system for rolling-element bearings is essential 
for monitoring degradation, mitigating risks, and prevent-
ing unexpected breakdowns. Recently, various methods 
have been developed for this purpose and can generally be 
divided into physics-based and data-driven models.

Physics-based models provide insights into the degra-
dation processes of bearings via a set of equations derived 
from mathematical representations of physical systems. Guo 
et  al. (2015) proposed a physics-based model for bearing 
degradation based on Hertzian contact theory and material 
fatigue that effectively predicts nonlinear degradation under 
varying operational conditions. Wu et al. (2016) proposed 

1  Introduction

Prognostic Health Management (PHM) systems play cru-
cial roles in industries as they monitor and predict equip-
ment health conditions to prevent severe operational safety 
hazards and ensure accident-free processes. One salient 
feature of PHM systems is Remaining Useful Life (RUL) 
estimation, which concentrates on estimating the remain-
ing effective lifespan of machinery or its components. 
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Abstract
Prognostic health management (PHM) systems have extensive applications in industry for monitoring and predicting the 
health status of equipment. Remaining Useful Life (RUL) estimation stands out as one important part of a PHM system 
that predicts the remaining operational lifespan of mechanical systems or their components, such as rolling element bear-
ings, which account for a high proportion of machinery failures. Although many methods for RUL estimation have been 
developed, there are some challenges in terms of generalizability and robustness under dynamic operating conditions. 
This paper introduces the CARLE AI framework, which integrates advanced deep learning architectures with shallow 
machine learning technique to overcome these limitations. CARLE integrates Res-CNN and Res-LSTM blocks with multi-
head attention and residual connections to capture spatial and temporal degradation trends coupled with Random Forest 
Regression (RFR) for robust and accurate predictions. We further propose a compact feature extraction framework that 
implements Gaussian filtering for efficient noise reduction and Continuous Wavelet Transform (CWT) for time–frequency 
feature extraction. We assessed the effectiveness of the proposed framework via the XJTU-SY and PRONOSTIA bearing 
datasets. Ablation experiments were conducted to assess the contribution of each component within CARLE, whereas 
noise experiments evaluated its resilience to noise. Cross-domain validation experiments were performed to examine the 
model’s generalizability across multiple domains. Additionally, comparative analyses with several state-of-the-art methods 
under dynamic operating conditions demonstrated that CARLE outperformed competing approaches, particularly in terms 
of generalizability to unseen scenarios. Furthermore, we discuss the reliability and trustworthiness of this framework via 
multiple state-of-the-art explainable AI (XAI) techniques, i.e., LIME and SHAP.
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a model with elastic deformation and stress distribution in 
ball bearings for simulating the initiation and development 
of spalls to show the merits of contact mechanics in under-
standing the early evolution of faults. Although these meth-
ods have achieved notable accomplishments, they require 
broad interdisciplinary knowledge and depend upon com-
plicated mathematical modeling.

Data-driven methods uncover the hidden relationships 
within condition monitoring data. Further, it can be divided 
into two subcategories: shallow machine learning and deep 
learning. Bienefeld et al. (2022) explored Radom Forest (RF) 
performance in RUL estimation of rolling-element bearings 
using an extended feature engineering strategy involving 
the time domain, frequency domain, and statistical features 
extracted from vibrational signals. Zhang et al. (2021) pro-
posed a Relevance Vector Machine RVM-coupled method 
that integrates the advantages of health indication fusion 
to create one unified health indicator out of a set of vibra-
tional and temperature-motivated features. The number of 
developments in monitoring data acquisition continues to 
increase significantly, making meaningful feature extraction 
of monitored multisensory data even more crucial for RUL 
estimation. However, most shallow machine learning algo-
rithms have notable limitations in dealing with big data in 
terms of prediction accuracy and computational efficiency.

Deep learning architectures are designed to capture and 
represent rich patterns in big data through the composition 
of a neural network made of multiple hidden layers com-
posed of perceptrons. Advanced deep learning algorithms, 
including CNN Alzubaidi et al. (2021), recurrent networks 
such as LSTM Hochreiter (1997) and GRU Chung et al. 
(2014), and attention mechanisms Vaswani (2017) have 
proven highly efficient in uncovering hidden relationships 
within big data learning for RUL estimation of rolling ele-
ment bearings. Li et  al. (2019) proposed a CNN-based 
approach using vibrational signal spectrograms and dem-
onstrated very good performance, thus proving its ability 
to learn nonlinear degradation trends distinguishing subtle 
data variations in data. However, CNNs struggle to model 
temporal degradation trends and long-term time dependen-
cies within big data, limiting their real-world applicability. 
Zhang et  al. (2018) utilized an LSTM-based network that 
effectively models long-term dependencies and captures 
temporal degradation features within massive datasets; 
however, its sensitivity to hyperparameters, overfitting and 
lack of noise handling limit its accuracy. Li et  al. (2023) 
proposed a GRU-based DeepAR network that was efficient 
in modeling temporal dependencies with parameters and an 
adaptive failure threshold. However, it is sensitive to noise 
and often requires careful tuning in complex cases. Deng 
et  al. (2023) presented a calibrated hybrid transfer learn-
ing framework including a dynamic rolling bearing model, 

particle filter-based calibration, and a physics-informed 
Bayesian deep dynamic network for improving fidel-
ity. However, it is still computationally intensive and has 
limited applicability in real-world conditions. Zhao et  al. 
(2023) proposed Multiscale Integrated Self-Attention that 
performs with multisensory degrading data at various scales 
by employing a multiscale CNN block including a self–
attention mechanism, a recurrent network module and fea-
ture fusion to extract multisensory-temporal features on the 
basis of their relationships and integrate them via mutual 
interaction. Although this approach improves prediction 
accuracy through an efficient loss function, it is hindered by 
varying sensor quality and data noise.

In addition to the individual limitations mentioned 
above, several other common challenges demand attention. 
Most of the methods reported in the literature are task-ori-
ented, diminishing their real-world applicability for many 
industrial machinery operations where real conditions are 
highly variable. The second significant limitation concerns 
the generalizability and robustness of RUL prediction sys-
tems, which heavily depend on effective feature extraction. 
Most existing approaches do not have a robust and compact 
framework for feature engineering; hence, they have limited 
reliability when dealing with big data. Another limitation 
concerns the fact that they are not transparent. Predictions 
are given in a black-box way, without underlining any fac-
tors of rationale that may contribute to supporting such an 
outcome. Therefore, the inability of the data-driven RUL 
model to offer interpretability or explainability raises con-
cerns regarding dependability and trust.

Given these drawbacks, we propose a causal RUL esti-
mation system that learns from one working condition and 
generalizes its learning to others. We aim to achieve this 
goal by designing a compact feature extractor framework 
that accounts for noise and provides a concise feature vector 
for the AI system. For the AI system, we introduce CARLE 
(Deep Ensemble Residual Convolutional-Attention LSTM 
Network) consisting of four distinct network blocks: Res-
CNN block, Res-LSTM block, Linear block and ML block. 
The Res-CNN block comprises several convolutional layers 
that extract spatial degradation trends from the input vector. 
These features are passed to a multi-head attention mecha-
nism (MHA) that selects the most relevant spatial features, 
suppresses redundant features, and enables differential 
treatment of features by scanning global information. The 
output is subsequently fed into the Res-LSTM network to 
capture temporal dependencies and long-term relationships 
between features. Residual connections between the CNN 
and LSTM layers are introduced to increase the robustness 
and generalizability of the system while also easing the 
computational complexity associated with each architec-
ture. Several linear layers are introduced in the Linear block 
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to recognize patterns and generate a logit vector, which 
serves as input for the ML block that contains the Random 
Forest Regression (RFR) for the final prediction. We vali-
date the performance of the system on the XJTU-SY and 
PRONOSTIA bearing datasets. We also discuss the trust-
worthiness of the AI framework via state-of-the-art explain-
able AI (XAI) techniques called LIME and SHAP, which 
allow us to assess whether the output prediction is reliable. 
The highlights of this research are listed below. 

1.	 A compact time-frequency feature extraction frame-
work is designed to handle noise via a Gaussian filter 
and to extract diverse features from multichannel sen-
sory data in both the time and frequency domains using 
Continuous Wavelet Transform (CWT).

2.	 A novel CARLE AI system is designed for rolling-ele-
ment bearings RUL estimation. The system ensemble 
the pattern-learning strength of multiple deep-learning 
architectures with the generalizability and robustness of 
shallow machine-learning algorithm.

3.	 The effectiveness of the algorithm is validated on the 
XJTU-SY and PRONOSTIA bearing degradation 
datasets, which include data from multiple operating 
conditions.

4.	 The reliability and trustworthiness of the proposed 
black-box framework are analyzed through multiple 
state-of-the-art XAI techniques, i.e., LIME and SHAP.

The remainder of the paper is organized as follows: Sec-
tion 2 outlines the methodology and algorithms utilized in 
the research. Section 4 presents the experimental results and 
analysis of the proposed framework. Section 5 concludes 
the research by discussing potential future work and areas 
for improvement. The appendix presents an overview of the 
foundational elements of the proposed framework, includ-
ing a discussion on the feature extraction algorithms and 
training setup with hyperparameters of our implementation.

2  Time–frequency feature extraction 
framework

The monitoring data from rolling element bearings typically 
consist of signals from multiple sensors, often exhibiting 
time-varying characteristics with perturbations, primarily 
thermal noise caused by changing operating conditions and 
temperature variations. To ensure effective analysis, a com-
pact feature engineering preprocessing step is essential to 
filter out these perturbations before training the AI system 
(see Algorithm 1). Otherwise, the perturbations can signifi-
cantly degrade the performance of the system. Assuming 
that the number of sensors is Ns and the data length is Ld, 
the raw data are represented as:

I = [i1, i2, . . . , iLd
], ik = [n1

k, n2
k, . . . , nk

Nc
]� (1)

where ik represents the sensor reading at timestep k for Nc 
channels. We filtered out the obtained raw data via Gauss-
ian filter to smooth the edges and reduce short-term fluc-
tuations. The choice of Gaussian filter is motivated by its 
effectiveness in reducing Gaussian noise while preserving 
signal edges, offering computational efficiency and reli-
able smoothing compared to the Fourier transform Brace-
well (1989) or EMD methods Stallone et  al. (2020). Let 
the filtered signal be denoted as If (t). The smooth signal is 
obtained by convolving the raw signal with the Gaussian fil-
ter (G(x)) (see Appendix A), represented mathematically as:

If (t) =
ˆ ∞

−∞
I(τ)G(t − τ) dτ � (2)

The value of the standard deviation σg  for the Gaussian filter 
plays a critical role in this process. It controls the degree of 
smoothing applied to the signal. After experimenting with 
various values and analyzing the signal-to-noise (SNR) (see 
Fig. 1), we find the optimal balance for our use cases, effec-
tively filtering out noise and thermal perturbations while 
preserving critical information essential for RUL estima-
tion. The filtered signal If (t) is then forwarded to the CWT 
(see Appendix A) for feature extraction. However, before 

Fig. 1  Signal-to-Noise ratio (SNR) analysis w.r.t σg . The analysis 
shows the balance between noise reduction and signal preservation. 
When no smoothing is applied, the SNR remains high due to pres-
ervation of the original signal’s fidelity. As the smoothing parameter 
increases, the filtering mechanism effectively reduces high-frequency 
noise. However, the process simultaneously diminishes the finer details 
and dynamic components of the signal, resulting in a rapid decline in 
the SNR. After a certain smoothing intensity, noise reduction occurs at 
the cost of negligible signal distortion (σg ≈ 0.75 for XJTU-SY and 
σg ≈ 1.1 for PRONOSTIA). This stabilization point signifies an opti-
mal parameter range where the balance between noise suppression and 
signal integrity is achieved

 

1 3



W. Razzaq, Y.-B. Zhao

where N  is the number of scales selected on the basis of 
the desired resolution in the time–frequency domain. Figure 
2 presents the visual representation of the compact feature 
extractor framework. The following time–frequency rep-
resentation (TFR) features are derived to characterize the 
system’s physical state:

	● Energy (E): represents the vibrational activity of the 
system. A continuous increase in energy typically corre-
lates with progressive wear or distributed fatigue within 
the system, often evident as surface pitting. In contrast, 
sudden spikes indicate localized defects, such as spall-
ing or crack propagation Randall and Antoni (2011); 
Smith and Randall (2015). Lubrication failures contrib-
ute to significant fluctuations, primarily due to the oc-
currence of intermittent metal-to-metal contact, whereas 
contamination, such as ingress of debris, results in tran-
sient energy spikes. The energy is computed as: 

E =
M∑

m=1
|Γiw

(a, b)|2� (9)

	● Dominant frequency (fd): corresponds to the frequen-
cy at which the systems exhibit the highest energy con-
centration. Shifts in fd can serve as a diagnostic tool 
for identifying specific faults within the system. Align-
ments with bearing fault frequencies, such as the ball 
pass frequency, are indicative of localized defects, com-
monly in the form of inner or outer race cracks (BPFO/
BPFI) Borghesani et al. (2013); Tandon and Choudhury 
(1999). The presence of subharmonic components in fd 
suggests potential issues such as looseness or imbal-
ance within the system. Broadband frequency-domain 
profiles are characteristics of chaotic faults, which are 
typically associated with lubrication failures or contami-
nation, as they introduce fluctuations in the system’s be-
havior. The dominant frequency is calculated as: 

fd = ascale(argmax(E))� (10)

	● Entropy (h): measures the vibrational randomness 
within the system. Elevated entropy values suggest non-
stationary defects, such as irregular spalling or loose-
ness. In the case of lubrication failure, the entropy in-
creases due to erratic friction, while corrosion-related 
damage leads to increased entropy through surface in-
teractions. Early-stage fatigue typically indicates low 
entropy, which escalates as the degradation process be-
comes more chaotic. The entropy is calculated as: 

applying the CWT, the signal is divided into smaller seg-
ments using a windowing technique. The window operation 
can be represented as:

iw(t) = If (t) · wi(t)� (3)

where wi(t) is the window function with window length Tw 
for the i-th segment, defined as:

wi(t) =
{

1 if t ∈ [ti, ti+1 + Tw]
0 otherwise. � (4)

By breaking down the signal into smaller segments, the 
CWT ensures that localized time–frequency features are 
captured, which is vital for accurately modeling degrada-
tion trends for accurate RUL estimation. The CWT can then 
be mathematically computed as:

Γiw(a, b) =
ˆ ∞

−∞
iw(t)ψ∗

(
t − b

a

)
dt� (5)

where Γiw(a, b) represents the wavelet coefficients of the 
windowed signal and where ψ is the Morlet wavelet. To 
extract meaningful features from the CWT, it is critical to 
carefully select the frequency range of interest (fmin, fmax), 
as this range defines the scale range of the CWT. The choice 
of these frequencies is informed by the system’s operational 
condition fo, allowing the model to accommodate multiple 
scenarios effectively. In our implementation, we considered 
up to the third harmonic, providing a good balance between 
computational efficiency and capturing useful features. The 
frequency bounds are as follows:

fmin ≈ fo

3
, fmax ≈ 3fo� (6)

The corresponding wavelet transform scales can be calcu-
lated as:

amin = fc

fmax · Tsampling
, amax = fc

fmin · Tsampling
� (7)

where Tsampling = 1/fsampling is the period of the sampled 
vibrational signal and fc is the central frequency of the Mor-
let wavelet, typically chosen as fc = 0.81, to govern the 
trade-off between time and frequency resolutions. To ensure 
comprehensive coverage of the frequency range, logarith-
mically spaced scales are used:

ai ∈ [amin, amax], i = 1, 2, . . . , N � (8)
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	● Mean (µ): The mean vibrational level serves as a base-
line indicator of system behavior. A gradual increase in 
the mean is often associated with distributed wear pro-
cesses, such as corrosion or thermal degradation, where-
as a sudden shift typically signals more severe faults, 
such as cage features. Lubrication failures can elevate 
the mean due to an increase in friction in the system. 
The mean is calculated as: 

µ = 1
N

M∑
m=1

iw(m)� (14)

	● Standard deviation (σ): represents the variability of 
the signal. High values indicate unstable faults such as 
looseness or contamination, which cause erratic behav-
ior. Conversely, fatigue cracks contribute to increased 
variability during intermittent spalling events, indicat-
ing ongoing damage and instability in the system. The 
standard deviation is calculated as: 

σ =

√√√√ 1
M

m∑
i=1

(iw(m) − µ)2� (15)

h = −
K∑

i=1
P (iw) log P (iw)� (11)

	● Kurtosis (K): detects transient impacts by analyzing 
extreme deviations in the signal distribution. The high-
est kurtosis values are typically associated with local-
ized defects, including fatigue cracks, electrical pitting, 
and particle collisions caused by contamination Antoni 
(2006). Kurtosis is calculated as follows: 

K = E[(iw − µ)4]
σ4

� (12)

	● Skewness (sk): measures the asymmetry in the distribu-
tion of signal data. Positive skewness typically indicates 
unidirectional impacts, such as brinelling, while nega-
tive skewness suggests repetitive low-energy events, 
like the initiation of cracks. Asymmetric wear patterns 
resulting from thermal warping or corrosion also mani-
fest as deviations in skewness, highlighting an imbal-
ance in the system’s behavior. The skewness is calcu-
lated as: 

sk = E[(iw − µ)3]
σ3

� (13)

Fig. 2  Schematic diagram of the compact feature extractor framework

 

1 3



W. Razzaq, Y.-B. Zhao

3  CARLE framework

We propose CARLE (Deep Ensemble Residual Convolu-
tional-Attention LSTM Network) for the accurate RUL 
estimation in rolling element bearings. Unlike stacking-
based ensembles that primarily combine base learners Ture 
et al. (2024), CNN-Bi-LSTM approaches designed around 
predictive maintenance policies Wang et al. (2024), or data 
fusion methods with stage division Li et al. (2024), CARLE 
integrates residual CNNs, attention-driven LSTMs, and 
Random Forest Regression into a single unified framework. 
This design preserves spatial-temporal degradation features 
and enhances adaptability to unseen operating conditions, 

While many existing approaches Lei et al. (2007); Wenjian 
et  al. (2024); Abdellatief et  al. (2025); Abdellatief et al. 
(2025) use 20 or more TFR features, we extract only seven 
physically meaningful features, reducing offline computa-
tion time by on average 66%. Integrating these features, 
such as transient detection through K and h, with long-term 
trend analysis via µ and σ can enhance RUL estimation. 
An increase in µ with intermittent spikes in K indicates 
progressive wear punctuated by transient damage events. 
This allows for adaptive RUL updates that account for both 
ongoing wear and irregular fault occurrences. Similarly, the 
chaotic behavior observed in sk and shifts in fd improve 
prognostic accuracy by isolating fault-specific degradation 
pathways, allowing for a more precise RUL.

Fig. 4  Schematic diagram of the Res-CNN block

 

Fig. 3  The schematic diagram of 
the CARLE AI system
 

Algorithm 1  Time–frequency Feature Extraction Framework
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Machine Learning Block: The Random Forest Regres-
sion (RFR) model receives the logit vector from the linear 
block to enhance the generalization capabilities for new 
data, providing diverse perspectives and flexibility. RFR 
enhances generalization because it aggregates predictions 
from many decision trees trained on different subsets of the 
data and features. This ensemble averaging reduces over-
fitting, mitigates the effect of noise or outliers, and allows 
the model to capture diverse nonlinear relationships in the 
degradation features, making RUL predictions more robust 
to unseen operating conditions.

The stacking of these modules–CNN → Attention → 
LSTM → RFR–is deliberate. It reflects a layered processing 
approach: starting with low-level feature extraction, pro-
gressing to global pattern discovery, and concluding with 
structured temporal reasoning. This combination offers a 
comprehensive understanding of the degradation process, 
improving the robustness and accuracy of RUL predictions.

4  Experimental results and analysis

4.1  Dataset explanation

XJTU-SY dataset: developed through a collaboration 
between Xi’an Jiaotong University and Changxing Sumy-
oung Technology for experimentation and validation of 
RUL algorithms Wang et al. (2018). The dataset includes 
run-to-failure vibration data from 15 rolling element bear-
ings obtained through accelerated degradation experiments 
under three distinct operational conditions: 1200 rpm (35 
Hz) with a 12 kN radial load, 2250 rpm (37.5 Hz) with an 
11 kN radial load, and 2400 rpm (40 Hz) with a 10 kN radial 
load. Vibration signals were captured via accelerometers 

providing broader generalization across diverse require-
ments. A schematic diagram of CARLE is shown in Fig. 
3. The CARLE architecture comprises four interconnected 
blocks:

Res-CNN Block: receives the input feature vector (Ifv
) 

and processes it through multiple convolutional heads, each 
employing distinct filter and kernel sizes to extract salient 
degradation features. The MHA mechanism is incorporated 
at the output to enhance feature selection, allowing the model 
to prioritize relevant degradation features while minimizing 
redundant information. Additionally, residual connections 
are integrated to facilitate identity mapping, ensuring that 
vital features are retained and propagated throughout the 
network. This helps maintain accuracy in RUL predictions 
as the complexity increases. The schematic diagram of the 
Res-CNN is shown in Fig. 4.

Res-RNN Block: receives the spatial degradation trends 
from the Res-CNN and processes them through a series of 
LSTM layers to capture the temporal characteristics and 
long-term dependencies inherent in the degradation fea-
tures. Similar to the CNN block, a multi-head attention 
mechanism and residual connections are incorporated to 
enhance the focus on significant features and preserve criti-
cal information across layers. The schematic diagram of the 
Res-RNN is shown in Fig. 5.

Linear Block: consists of a series of fully connected 
layers tasked with recognizing patterns within the tempo-
ral degradation features, enabling the model to generalize 
effectively across diverse, unseen operating conditions. The 
output is a logit vector, which serves as input for the subse-
quent prediction mechanism. The schematic diagram of the 
Linear block is shown in Fig. 6.

Fig. 6  The schematic diagram of 
Linear block
 

Fig. 5  Schematic diagram of the 
Res-RNN block
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7(b) provides the testbed to capture the data. For training, 
we utilized 3 bearing data from 4KN operating conditions 
which is about 52% of total samples, and for validation, we 
focused on evaluating generalizability using data from 4.2 
kN and 5 kN and ignored temperature data.

4.2  RUL labels

Generating RUL labels is a crucial step in estimating remain-
ing useful life. Some studies assume degradation occurs at 
a constant rate Luo and Zhang (2022); Yong et al. (2024); 
Deng et al. (2023), but real-world conditions rarely follow a 
perfectly linear pattern. Instead, degradation often occurs in 
a nonlinear, piecewise manner, as suggested in other stud-
ies Zhao et al. (2023); Yin et al. (2025); Al-Dulaimi et al. 
(2019). To explore both possibilities, we created labels for 
the XJTU-SY dataset based on linear degradation models, 
visualized in Fig. 8 using a log scale for clarity. Since long-
term monitoring data form a time series, the initial operation 
phase is typically stable, with minimal noticeable degrada-
tion. Therefore, for the PRONOSTIA dataset, we applied 
the nonlinear, piecewise degradation model shown in Fig. 
8 to more accurately represent how bearing performance 
decreases over time.

4.3  Evaluation indicators

For evaluation, we utilized two metrics: the mean absolute 
error (MAE) and the root mean square error (MSE). A brief 
description of these metrics is as follows:

MAE: is widely used in RUL analysis to quantify the 
accuracy of predictive models. It measures the average 
magnitude of absolute errors between the predicted RUL 
(yi) and the true RUL (ŷi), regardless of direction. The 
mathematical expression is as follows:

mounted on horizontal and vertical axes, sampled at a fre-
quency (fsample) of 25 kHz, and recorded at one-minute 
intervals, with each sample comprising 1.28 seconds of 
data. The experimental testbed is depicted in Fig. 7(a). For 
training, data from the fo = 35Hz condition (1200 rpm 
with a 12 kN load) were used, while validation focused on 
evaluating generalizability using data from the fo = 40Hz 
condition (2400 rpm with a 10 kN load) and fo = 37.5 con-
dition (2250 rpm with an 11 kN load).

PRONOSTIA dataset: is a benchmark dataset widely 
used for research in condition monitoring and RUL analysis 
of rolling element bearings; it was developed as part of the 
PRONOSTIA experimental platform Nectoux et al. (2012). 
The dataset provides 16 complete run-to-failure data col-
lected under accelerated degradation conditions with three 
distinct operational conditions: 1800 rpm (100 Hz) with a 
4 kN radial load, 1650 rpm (100 Hz) with a 4.2 kN radial 
load, and 1500 rpm (100 Hz) with a 5 kN radial load. Vibra-
tion signals were captured via accelerometers mounted on 
the horizontal and vertical axes and sampled at 25.6 kHz, 
whereas temperature data were sampled at 10 Hz. Figure 

Fig. 8  RUL labels for both datasets

 

Fig. 7  a XJTU-SY testbed; b PRONOSTIA testbed for recording vibrational data
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operating conditions from each operating condition and 
dataset.

For the XJTU dataset:

	● 35Hz12kN: (Figure 9(a-iii)): CARLE achieved the 
lowest error with an MSE of 0.00220, MAE of 0.04087 
and Score of 130.016. CALE followed closely with an 
MSE of 0.00265 (↑16%), MAE of 0.04561 (↑10%) and 
Score of 144.2532. CRLE recorded an MSE of 0.00275 
(↑20%), MAE of 0.04747 (↑13%) and Score of 149.22, 
while CARL performed the worst with an MSE of 
0.00806 (↑72%), MAE of 0.07905 (↑48%) and Score 
of 250.3705.

	● 37.5Hz11kN: (Figure 9(a-viii)): CARLE achieved an 
MSE of 0.01407, MAE of 0.10697 and Score of 1083.53. 
CALE showed slightly better MSE (0.01388, ↓1.3%) 
but nearly identical MAE (0.10701, ↑0.03%) with Score 
of 1081.08. CARL showed an MSE of 0.021 (↑33%), 
MAE of 0.13195 (↑19%) and Score of 1334.1443, while 
CRLE yielded an MSE of 0.02340 (↑39.87%), MAE of 
0.13731 (↑22%) and Score of 1411.7924.

	● 40Hz10kN: (Figure 9(a-xiii)): CARLE maintained 
strong performance with an MSE of 0.03085, MAE of 
0.15631 and Score of 331.6710. CALE demonstrated 
marginal improvements with an MSE of 0.02781 (↓
9.8%), MAE of 0.14869 (↓4.8%) and Score of 323.87. 
Conversely, CARL and CRLE again exhibited degraded 
performance, recording MSEs of 0.05309 (↑42%) and 
0.05481 (↑43%), MAEs of 0.20083 (↑22%) and 0.20161 
(↑22.4%) and Score of 424.47 and 420.05, respectively.

For the PRONOSTIA dataset:

	● 100Hz4kN: (Figure 9(b-iii)): CARLE achieved superior 
performance with an MSE of 0.00029, MAE of 0.01312 
and Score of60.912. CALE showed reduced accuracy 
with an MSE of 0.00094 (↑60%), MAE of 0.02538 (↑
48.3%) and Score of 64.2970. CRLE performed moder-
ately, with an MSE of 0.00049 (↑40%), MAE of 0.01723 
(↑23.8%) and Score of 59.89, while CARL reached an 
MSE of 0.00033 (↑12.1%), MAE of 0.01294 (↓1.2%) 
and Score of 64.2970.

	● 100Hz4.2kN: (Figure 9(b-x)): CARLE achieved an 
MSE of 0.00831, MAE of 0.07488 and Score of 72.5470. 
CALE yielded an MSE of 0.01240 (↑32.9%), MAE of 
0.09776 (↑23.4%) and Score of 96.5710. Interestingly, 
CRLE outperformed CARLE here, recording an MSE 
of 0.00601 (↓10%), MAE of 0.04195 (↓56%) and Score 
of 66.5046. CARL also showed strong results, with an 
MSE of 0.00601 (↓27.6%), MAE of 0.03408 (↓54.4%) 
and Score of 229.629.

MAE = 1
n

n∑
i=1

|yi − ŷi|

where n is the total number of predictions. The MAE is 
particularly suitable for RUL analysis because it equally 
penalizes overpredictions and underpredictions, ensuring an 
unbiased evaluation of the model’s ability to estimate the 
RUL.

MSE: calculates the square root of the average squared 
differences between the predicted RUL (yi) and the true 
RUL (ŷi). It is given by:

MSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

Owing to the squaring of differences, the MSE penalizes 
larger errors more heavily. This makes it sensitive to signifi-
cant prediction deviations, emphasizing the model’s ability 
to minimize large prediction errors.

Score is a metric specifically designed for RUL estima-
tion in the IEEE PHM Nectoux et al. (2012) to score the 
estimates. The scoring function is asymmetric and penal-
izes overestimations more heavily than early predictions. 
This reflects practical considerations, as late maintenance 
prediction can lead to unexpected failures with more severe 
consequences than early intervention can.

Score =
∑

i:ŷi<yi

(
e− ŷi−yi

13 − 1
)

+
∑

i:ŷi≥yi

(
e

ŷi−yi
10 − 1

)
� (16)

4.4  Ablation experiments

Ablation experiments of CARLE were conducted to validate 
the effectiveness of each constituent of the architecture. We 
compared CARLE against its three variants: CARL with-
out ensemble learning, CRLE without MHA, and CALE 
without residual connections. We noticed that CARLE and 
CALE performed very closely in terms of training oper-
ating conditions, but CARLE was marginally better than 
CALE. However, CARLE performed much better under 
unseen operating conditions, highlighting the role of resid-
ual connections in enhancing robustness. In contrast, both 
CRLE and CARL performed very poorly, with CARL being 
unsuitable for practical use. The ensemble machine learning 
approach yielded the most significant performance gains. A 
detailed comparison of both XJTU-SY and PRONOSTIA is 
shown in Fig. 9(a) and (b), while evaluation metrics are pro-
vided in Tables 1 and 2, respectively. For the sake of result 
explanations, we selected Bearing 3 under representative 
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Fig. 9  Ablation experiment prediction a XJTU-SY; b PRONOSTIA with fault types
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sudden sensor failures. Results show that the model is 
largely resilient to Gaussian noise, with only minor perfor-
mance degradation on the XJTU-SY dataset (Fig. 10(a)). 
Salt-and-pepper noise, however, causes a more significant 
performance drop, highlighting a potential limitation for 
real-world deployment where sensor spikes or dropouts 
can occur due to electrical interference, hardware faults, 
or communication errors. In the PRONOSITA evaluation 
(Fig. 10(b)), the impact of both noise types is more moder-
ate, indicating that the model can still preserve long-term 
bearing degradation patterns. To mitigate the effect of salt-
and-pepper noise in practice, preprocessing filters such as 
median or robust statistical filters can remove sudden spikes, 
sensor fusion can reduce the influence of any single faulty 
measurement, and training with noise-augmented data can 
help the model learn to ignore extreme outliers. Addition-
ally, integrating lightweight anomaly detection modules 
could flag or correct extreme values in real time, ensuring 
more reliable RUL predictions under noisy conditions.

4.6  Cross-domain validation experiments

Cross-domain validation is crucial for assessing the gener-
alizability of AI frameworks when applied to datasets with 
differing statistical distributions. It evaluates whether a 
model trained on one dataset can maintain predictive per-
formance on another, thereby mitigating overfitting to a 
single domain and improving applicability in dynamic envi-
ronments. We evaluate the PRONOSTIA-trained CARLE 

	● 100Hz5kN: (Figure 9(b-xvii)): CARLE recorded 
an MSE of 0.14125, MAE of 0.17514 and Score of 
37.2298. CALE improved significantly, with an MSE 
of 0.02628 (↓81%), MAE of 0.14068 (↓19.6%) and 
Score of 30.7763. CRLE achieved an MSE of 0.04916 
(↓60%), MAE of 0.17957 (↓2.4%) and 25.7763, while 
CARL showed an MSE of 0.06594 (↓53%) but a higher 
MAE of 0.22075 (↑26%) with Score of 40.9659.

These findings confirm that each architectural component 
within CARLE makes a meaningful contribution to the 
overall model performance. Ensemble learning, in particu-
lar, drives substantial accuracy gains, while residual con-
nections and attention mechanisms further support model 
generalization, especially in complex or unseen operational 
settings.

4.5  Noise experiment

Noise experiments are crucial for evaluating the robustness 
and reliability of AI frameworks, particularly in real-world 
scenarios where data are affected by sensor noise, environ-
mental variations, or system uncertainties. By introducing 
controlled noise into the input data, we can assess the mod-
el’s stability and its ability to generalize beyond ideal con-
ditions. In our experiments, Gaussian noise with a normal 
distribution (µ = 0, σ = 0.1) was added to simulate typical 
sensor fluctuations. Additionally, salt-and-pepper noise was 
applied randomly to 10% of the data points, representing 

Table 1  Ablation experiment (XJTU-SY)
Bearing Model 35Hz12kN 37.5Hz11kN 40Hz10kN

MSE MAE Score MSE MAE Score MSE MAE Score
Bearing 1 CARLE 0.00345 0.05157 122.5423 0.03273 0.16070 1505.8041 0.03314 0.15983 2269.5957

CARL 0.01377 0.09911 234.7118 0.05943 0.21274 1986.9069 0.06752 0.22609 3222.6052
CALE 0.00331 0.05126 121.5300 0.03630 0.16899 1581.9119 0.03954 0.17636 2564.5586
CRLE 0.00398 0.05639 133.9703 0.04990 0.19688 1865.2695 0.05716 0.20893 3030.7470

Bearing 2 CARLE 0.00183 0.03692 114.4403 0.00671 0.07308 232.8929 0.06673 0.22032 1708.8516
CARL 0.00376 0.05666 175.5158 0.00883 0.08308 267.3460 0.07617 0.23716 1859.4258
CALE 0.00208 0.04082 125.9960 0.00786 0.06997 236.2859 0.02941 0.15117 1345.2411
CRLE 0.00178 0.03694 113.9618 0.01698 0.11337 368.1130 0.06164 0.21395 1672.4370

Bearing 3 CARLE 0.00220 0.04087 130.0166 0.01407 0.10697 1083.5319 0.03085 0.15631 331.6710
CARL 0.00806 0.07905 250.3705 0.02100 0.13195 1334.1443 0.05309 0.20083 424.4746
CALE 0.00265 0.04561 144.2532 0.01388 0.10701 1081.0886 0.02781 0.14869 323.8718
CRLE 0.00275 0.04747 149.2223 0.02340 0.13731 1411.7924 0.05481 0.20161 420.0580

Bearing 4 CARLE 0.01172 0.09653 225.5295 0.02149 0.12591 96.9172 0.03361 0.16221 1396.6897
CARL 0.05099 0.19865 461.9145 0.02965 0.14793 114.1304 0.06197 0.21669 1859.8220
CALE 0.01264 0.10096 236.8543 0.02065 0.11565 85.9529 0.03220 0.15930 1429.6296
CRLE 0.01332 0.10426 245.6415 0.03441 0.16022 124.7697 0.05450 0.20399 1745.6810

Bearing 5 CARLE 0.00465 0.05938 59.9726 0.01373 0.09903 582.5476 0.09625 0.26167 154.0171
CARL 0.02127 0.12677 128.7710 0.01256 0.09288 547.5211 0.11684 0.28730 169.0601
CALE 0.00486 0.06090 61.3297 0.00985 0.08766 511.8520 0.08958 0.26006 151.7796
CRLE 0.00537 0.06420 64.8331 0.02060 0.12428 750.2275 0.06565 0.22405 130.8896

Bold values indicate the minimum MSE, MAE, and Score for each bearing-condition combination
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4.7  Comparison with baseline methods

To comprehensively evaluate the performance of CARLE, 
we conducted comparative experiments against several 
baseline methods, including CNN-LSTM Hu et al. (2024), 
CNN-BiLSTM Guo et al. (2023), and MSIDIN Zhao et al. 
(2023). For a fair comparison, all competing models were 
trained using feature vectors extracted by the proposed 
compact feature extractor framework. Additionally, hyper-
parameters for each method, including CARLE, were fine-
tuned using Bayesian Optimization Snoek et al. (2012) with 
150 search trials to ensure optimal performance. Under 
training operating conditions, most state-of-the-art models 
were able to estimate RUL with reasonable accuracy based 
on MSE and MAE metrics. However, CARLE consistently 
outperformed all other methods across both datasets, with 
particularly significant improvements observed under 
unseen operating conditions. Detailed comparison metrics 
for the XJTU-SY and PRONOSTIA datasets are provided 
in Tables  4 and  5, respectively. To further interpret these 

model on the XJTU-SY dataset, as both datasets share iden-
tical feature sets derived via Algorithm 1 but differ in label 
distributions. To address domain shift, we employ Princi-
pal Component Analysis (PCA) and Correlation Alignment 
(CORAL) for feature space alignment. The process involves 
feature extraction from both datasets, transformation via 
PCA, and distribution alignment using CORAL (see Fig.e 
11(a)) before generating predictions. Our analysis (see Fig. 
11(b) and Table 3) indicates that the adapted methodology 
produces varying prediction accuracy, with notable differ-
ences between CORAL-aligned and non-aligned results. 
Specifically, the CORAL-aligned model achieved an MSE 
of 0.0961, MAE of 0.2803, and Score of 297.3991, whereas 
the non-aligned model achieved an MSE of 0.1049, MAE 
of 0.2919, and Score of 321.70. These discrepancies likely 
arise from residual differences in label distributions and 
unmodeled domain-specific variations. While the alignment 
approach improves feature consistency across datasets, the 
remaining prediction error suggests that further optimiza-
tion is needed to enhance model robustness.

Table 2  Ablation experiment (PRONOSTIA)
Bearing Model 100Hz4kN 100Hz4.2kN 100Hz5kN

MSE MAE Score MSE MAE Score MSE MAE Score
Bearing 1 CARLE 0.00017 0.00890 67.7651 0.00687 0.06874 34.2385 0.03073 0.15232 22.3816

CARL 0.00060 0.01944 52.1498 0.20664 0.39369 125.8891 0.01941 0.12100 26.8461
CALE 0.00130 0.02515 53.3133 0.01075 0.08844 44.6632 0.02536 0.13877 34.7183
CRLE 0.00055 0.01640 64.1635 0.00720 0.07223 34.3931 0.03786 0.17235 41.4252

Bearing 2 CARLE 0.00289 0.04268 28.5949 0.00406 0.05340 22.4782 0.04126 0.17514 52.6417
CARL 0.01822 0.10301 53.7729 0.09584 0.26255 69.0456 0.06594 0.22073 114.1094
CALE 0.01010 0.08341 44.0762 0.00706 0.06948 33.5543 0.02629 0.14069 112.8656
CRLE 0.00643 0.06490 37.0388 0.00403 0.05156 26.3432 0.04196 0.17951 137.5010

Bearing 3 CARLE 0.00029 0.01312 60.9126 0.00831 0.07488 72.5470 0.14125 0.17514 37.2298
CARL 0.00033 0.01294 53.8716 0.17432 0.34082 229.6209 0.065935 0.220728 40.9659
CALE 0.00094 0.02538 64.2970 0.01240 0.09776 96.5710 0.02628 0.14068 30.4960
CRLE 0.00049 0.01723 59.8920 0.00601 0.041959 66.5046 0.04916 0.17951 25.7763

Bearing 4 CARLE 0.00052 0.01635 35.9291 0.01035 0.07616 39.0356 – – –
CARL 0.00237 0.03209 45.9774 0.02068 0.12315 34.4502 – – –
CALE 0.00268 0.04036 36.9779 0.01279 0.09542 38.6783 – – –
CRLE 0.00134 0.02676 37.9885 0.01029 0.08145 38.1909 – – –

Bearing 5 CARLE 0.00264 0.03956 69.1269 0.00711 0.06936 91.5711 – – –
CARL 0.00885 0.07636 86.3878 0.08058 0.23612 178.1749 – – –
CALE 0.00999 0.08285 116.8831 0.01398 0.10261 122.0432 – – –
CRLE 0.00605 0.06274 94.7340 0.00878 0.07688 94.7391 – – –

Bearing 6 CARLE 0.02014 0.12283 97.9291 0.07713 0.23869 24.9688 – – –
CARL 0.03497 0.13915 205.7567 0.20729 0.39659 98.0300 – – –
CALE 0.03064 0.15598 151.3578 0.03074 0.15201 51.7674 – – –
CRLE 0.05942 0.20851 184.1260 0.03314 0.15922 57.2092 – – –

Bearing 7 CARLE 0.00799 0.06877 101.4600 0.00495 0.06176 12.3018 – – –
CARL 0.03480 0.13173 196.0093 0.06695 0.18207 26.0443 – – –
CALE 0.01221 0.08969 122.1526 0.00929 0.08194 11.2305 – – –
CRLE 0.00905 0.07806 108.2637 0.00355 0.05256 8.9416 – – –

Bold values indicate the minimum MSE, MAE, and Score for each bearing-condition combination
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Fig. 10  Noise experiment result for a XJTU-SY; b PRONOSTIA
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0.04383, MAE of 0.17848 and Score of 494.269. CA-
BiLSTM reached an MSE of 2.41237, MAE of 1.24057 
and Score of 3667.2644, while CNN-LSTM exhibited 
the poorest accuracy with an MSE of 8.6898, MAE of 
1.81207 and Score of 5917.488.

	● 37.5Hz11kN: CARLE maintained superior results 
with an MSE of 0.01407, MAE of 0.10697 and Score 
of 2798.9778. MSIDIN followed with an MSE of 
0.08407, MAE of 0.24669 and Score 2528.81, CABiL-
STM showed degraded performance with an MSE of 
0.71245, MAE of 0.67876, Score 6417.187, and CNN-
LSTM further deteriorated to an MSE of 1.19243, MAE 
of 0.63259 and Score of 6304.808.

results, we examined Bearing 3 under each operating condi-
tion from both datasets.

For the XJTU-SY dataset:

	● 35Hz12kN: CARLE demonstrated the best performance 
with an MSE of 0.00220, MAE of 0.04087 and Score of 
199.61. In comparison, MSIDIN recorded an MSE of 

Table 3  Cross-domain Validation Experiment Results
Model MSE MAE Score
With CORAL 0.0961 0.2803 297.3991
Without CORAL 0.1049 0.2919 321.7089
 Bold values indicate the minimum MSE, MAE, and Score

Fig. 11  a Feature space alignment using CORAL-PCA; b RUL comparison of CORAL-PCA-aligned and non-aligned
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reported higher error values with an MSE of 0.15967, 
MAE of 0.35579 and Score of 64.344, while CABiL-
STM showed substantial degradation, reaching an MSE 
of 2.18729, MAE of 1.2095 and Score of 233.21. CNN-
LSTM also performed poorly, with an MSE of 1.07811, 
MAE of 0.84026 and Score of 150.869.

These findings reinforce CARLE’s ability to generalize 
effectively across different operating environments and its 
superior accuracy in both seen and unseen conditions. Nota-
bly, even in scenarios where other methods perform com-
petitively under trained settings, CARLE maintains a robust 
edge, particularly in generalization to unseen conditions, 
which is critical in real-world prognostics applications.

4.8  Explanations

Higher accuracy in an AI system does not necessarily mean 
its predictions reflect real-world outcomes Bontempi (2023). 
This makes it essential to direct explainable AI (XAI) efforts 
toward PHM systems, particularly for remaining useful life 
(RUL) analysis of mechanical components, where unex-
pected failures can cause major operational disruptions. In 
this study, we applied Local Interpretable Model-Agnostic 
Explanations (LIME) Ribeiro et al. (2016) and Shapley 
Additive Explanations (SHAP) Lundberg et al. (2017) to 
interpret model predictions.

We selected two test points, one from the early degra-
dation stage and one from the late degradation stage, to 

	● 40Hz10kN: CARLE achieved an MSE of 0.03805, 
MAE of 0.15631 and Score of 530.86. MSIDIN yield-
ed an MSE of 0.09673, MAE of 0.26873 and Score 
of 2094.007, CABiLSTM followed with an MSE of 
1.07763, MAE of 0.88477, Score of 1746.2798, and 
CNN-LSTM recorded an MSE of 1.39763, MAE of 
0.76697 and Score of 1562.1542.

For the PRONOSTIA dataset:

	● 100Hz4kN: CARLE again delivered optimal results, 
achieving an MSE of 0.00029, MAE of 0.01312 and 
Score of 70.195. MSIDIN followed with an MSE of 
0.00049, MAE of 0.01723 and Score of 1000.6890, 
while CABiLSTM recorded an MSE of 0.00268, MAE 
of 0.04036 and Score of 5860.68. Interestingly, CNN-
LSTM attained an MSE of 0.00033 but slightly outper-
formed CARLE on MAE with a score of 0.01294 and 
Score of 1834.09.

	● 100Hz4.2kN: CARLE obtained an MSE of 0.00831, 
MAE of 0.07488 and Score of 80.114. MSIDIN slight-
ly outperformed CARLE in all metrics, with MSE of 
0.00606, MAE of 0.06360 and Score of 530.557. CA-
BiLSTM trailed behind with an MSE of 0.01240, MAE 
of 0.09776 and Score of 3550.281, and CNN-LSTM 
significantly underperformed, with an MSE of 0.17432, 
MAE of 0.34082 and Score of 1312.410.

	● 100Hz5kN : CARLE achieved an MSE of 0.14152, 
MAE of 0.17514 and Score of 55.231. MSIDIN 

Table 4  Comparison with SOTA (XJTU-SY)
Bearing Model 35Hz12kN 37.5Hz11kN 40Hz10kN

MSE MAE Score MSE MAE Score MSE MAE Score
Bearing 1 CARLE 0.00345 0.05157 188.36298 0.03273 0.16070 2462.88 0.03314 0.15983 4009.317

CNN-LSTM 7.53585 1.68644 4212.5586 5.53985 1.19735 12144.208 15.12136 3.59279 54348.28
CABiLSTM 2.31171 1.23203 2790.2166 1.58179 0.90853 8101.4062 5.76011 2.28761 32350.693
MSIDIN 0.05074 0.17379 415.75772 0.08555 0.24885 2385.1533 0.08555 0.25344 3731.8108

Bearing 2 CARLE 0.00183 0.03692 217.17297 0.00671 0.07308 991.1647 0.06673 0.22032 2266.9412
CNN-LSTM 2.76083 0.93285 2875.2263 4.41759 1.27952 4030.5173 0.83365 0.85786 6560.502
CABiLSTM 0.92567 0.70848 2034.5358 1.53518 0.96063 2848.8662 1.19016 1.03863 7994.697
MSIDIN 0.05763 0.17848 562.8828 0.12322 0.28668 916.3111 0.08829 0.25199 2094.0076

Bearing 3 CARLE 0.00220 0.04087 199.6124 0.01407 0.10697 2798.9778 0.03085 0.15631 530.86194
CNN-LSTM 8.69865 1.81207 5917.488 1.19243 0.63258 6304.898 1.39763 0.76697 1562.1542
CABiLSTM 2.41237 1.24057 3667.2644 0.71245 0.67876 6417.187 1.07763 0.88477 1746.2798
MSIDIN 0.04383 0.15704 494.26984 0.08407 0.24669 2528.8157 0.09673 0.26387 554.0628

Bearing 4 CARLE 0.01172 0.09653 292.51904 0.02149 0.12591 245.14308 0.03361 0.16221 2362.9336
CNN-LSTM 2.75389 0.81807 1996.5586 2.34120 0.92475 729.2322 0.85732 0.66800 5408.3696
CABiLSTM 1.21288 0.81330 1857.263 1.11647 0.87074 651.8345 0.92342 0.82073 6554.092
MSIDIN 0.08448 0.24985 592.63196 0.08910 0.25441 198.84254 0.11538 0.27989 2404.415

Bearing 5 CARLE 0.00465 0.05938 92.718994 0.01373 0.09903 1890.4968 0.09625 0.26167 190.29407
CNN-LSTM 3.28659 1.36531 1333.5254 0.78787 0.78197 4740.767 1.34206 1.11198 669.8485
CABiLSTM 2.04337 1.19535 1150.7625 0.52122 0.61763 3721.561 1.00430 0.95609 572.3747
MSIDIN 0.06368 0.19819 204.28513 0.11293 0.28494 1821.144 0.35019 0.53957 319.7993

 Bold values indicate the minimum MSE, MAE, and Score for each bearing-condition combination across all models
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RUL estimation. Results (Fig.  12b, d) show that both the 
XJTU-SY and PRONOSTIA models rely heavily on σ, a 
measure of signal variability. This finding aligns with the 
physics of bearing failure, where increased variability often 
signals instability caused by defects such as looseness, con-
tamination, or misalignment. The models also prioritize 
fd components, which capture dominant frequency shifts 
associated with localized faults such as inner and outer race 
cracks, spalling, or lubrication deficiencies. In contrast, h 
contributes minimally, likely because fragmenting signals 
into shorter time windows reduces sensitivity to this global 
feature.

SHAP analysis (Fig. 13) confirms these findings and adds 
nuance. σ has the largest absolute impact, indicating that 
overall σ is the most reliable predictor of degradation. fd 
components follow closely, reflecting the model’s ability to 
capture fault-specific signatures. E features also contribute 
significantly, linking directly to failure mechanisms such 
as spalling progression, crack propagation, and lubrica-
tion breakdown. By contrast, h remains the least influential 

examine which features contribute most during fault devel-
opment. Figure 12(a, c) shows local explanations for XJTU 
and PRONOSTIA. In the early stage, σv  played the most 
significant role in predictions, followed by kv . This suggests 
that early degradation is primarily reflected in increased 
vibration variability and subtle distributional changes such 
as heavier tails. In practice, these effects correspond to small 
surface defects or early spalls on the bearing raceway that 
disturb the signal but do not yet dominate its frequency 
content.

As degradation progressed, the influence of σ and µ 
increased substantially, with k becoming the second most 
important feature. These variables capture more pronounced 
shifts in the vibration component and distributional asym-
metry, which in real-world terms correspond to advanced 
fault development. At this stage, cracks expand, spalls 
deepen, and defect impacts become stronger and more 
asymmetric, producing larger and more irregular vibra-
tions that are easier to isolate. To generate global insights, 
local explanations were aggregated to identify the vibra-
tion characteristics most critical to bearing degradation and 

Table 5  Comparison with SOTA (PRONOSTIA)
Bearing Model 100Hz4kN 100Hz4.2kN 100Hz5kN

MSE MAE Score MSE MAE Score MSE MAE Score
Bearing 1 CARLE 0.00017 0.00890 74.451 0.00687 0.06874 37.435 0.03073 0.15232 24.860

CNN-LSTM 0.00060 0.01944 4444.265 0.20664 0.39369 249.752 0.01941 0.12100 197.559
CABiLSTM 0.00130 0.02515 6380.369 0.01075 0.08844 477.703 0.02536 0.13877 281.832
MSIDIN 0.00055 0.01640 1488.338 0.00720 0.07223 156.422 0.03786 0.17235 88.091

Bearing 2 CARLE 0.00289 0.04268 32.028 0.00406 0.05340 25.583 0.04126 0.17514 54.820
CNN-LSTM 0.01822 0.10301 322.214 0.09584 0.26255 340.356 0.06594 0.22073 412.641
CABiLSTM 0.01010 0.08341 602.274 0.00706 0.06948 1421.654 0.02629 0.14069 1623.838
MSIDIN 0.00643 0.06490 159.866 0.00403 0.05156 154.332 0.04196 0.17951 330.132

Bearing 3 CARLE 0.00029 0.01312 70.194 0.00831 0.07488 80.114 0.141255 0.17514 55.231
CNN-LSTM 0.00033 0.01294 1834.090 0.17432 0.34082 1312.410 1.078112 0.845026 150.869
CABiLSTM 0.00094 0.02538 5860.680 0.01240 0.09776 3550.281 2.1872909 1.20955 233.210
MSIDIN 0.00049 0.01723 1000.680 0.00606 0.06360 530.557 0.159579 0.355762 64.344

Bearing 4 CARLE 0.00052 0.01635 39.394 0.01035 0.07616 41.840 – – –
CNN-LSTM 0.00237 0.03209 496.519 0.02068 0.12315 343.611 – – –
CABiLSTM 0.00268 0.04036 809.504 0.01279 0.09542 490.663 – – –
MSIDIN 0.00134 0.02676 228.168 0.01029 0.08145 132.623 – – –

Bearing 5 CARLE 0.00264 0.03956 79.403 0.00711 0.06936 102.632 – – –
CNN-LSTM 0.00885 0.07636 1135.705 0.08058 0.23612 951.493 – – –
CABiLSTM 0.00999 0.08285 2605.018 0.01398 0.10261 3279.224 – – –
MSIDIN 0.00605 0.06274 442.709 0.00878 0.07688 448.584 – – –

Bearing 6 CARLE 0.02014 0.12283 110.142 0.07713 0.23869 27.673 – – –
CNN-LSTM 0.03497 0.13915 1099.476 0.20729 0.39659 332.571 – – –
CABiLSTM 0.03064 0.15598 2633.624 0.03074 0.15201 447.319 – – –
MSIDIN 0.05942 0.20851 619.222 0.03314 0.15922 106.045 – – –

Bearing 7 CARLE 0.00799 0.06877 112.334 0.00495 0.06176 13.302 – – –
CNN-LSTM 0.03480 0.13173 878.371 0.06695 0.18207 63.732 – – –
CABiLSTM 0.01221 0.08969 1799.508 0.00929 0.08194 166.860 – – –
MSIDIN 0.00905 0.07806 362.584 0.00355 0.05256 33.425 – – –

Note: Bold values indicate the minimum MSE, MAE, and Score for each bearing–condition combination
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perturbations and short-term fluctuations. The CARLE AI 
framework comprises four blocks: Res-CNN captures spa-
tial degradation trends from the input feature set; Res-RNN 
captures temporal degradation trends, learning long-term 
time dependencies; Linear block identifies patterns within 
these dependencies to produce a logit vector; finally, RFR 
predicts the final RUL. This ensemble approach, combin-
ing deep learning and traditional machine learning meth-
ods, enhances robustness and generalization, allowing the 
system to adapt effectively from one working condition 
to unseen conditions. We evaluated the trustworthiness 
of the AI framework using aggregated LIME and SHAP. 
The analysis revealed that CARLE heavily relies on σ fea-
tures, which indicate that unstable faults such as looseness 
or contamination cause erratic behavior. The analysis also 
revealed that both models heavily rely on fd, which is an 
indicator of localized defects, including inner and outer race 
cracks, looseness, and lubrication failures. Additionally, 
SHAP suggests that E features are also important, as they 

feature, confirming that short window fragmentation reduces 
its predictive power.

This detailed feature-level interpretation shows that 
CARLE not only produces accurate RUL predictions but 
does so in a way that reflects the underlying physical pro-
cesses of bearing degradation, increasing both trust and 
applicability in high-risk industrial settings.

5  Conclusion

This research proposes a comprehensive RUL estimation 
system for rolling-element bearings. The system comprises 
three key components: a compact time–frequency feature 
extraction framework, an AI framework (CARLE), and XAI 
explanations. The feature extractor framework includes a 
complete algorithm to transform non-stationary vibrational 
signals into a set of time–frequency features using CWT. It 
also incorporates a Gaussian noise filter to eliminate signal 

Fig. 12  LIME explanation for a XJTU-SY; b for PRONOSTIA
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performance. Another possible mitigation is to incorporate 
domain-adaptive training or fine-tuning on the target dataset 
to better capture domain-specific label distributions. Fur-
thermore, in real-world scenarios, run-to-failure datasets 
are often unavailable. Implementing CARLE in a transfer 
learning configuration with incomplete run-to-failure data 
is also a promising direction for future research.

indicate mechanical stress, friction, and surface defects. 
Other factors contribute but are less significant, confirming 
the system’s reliability. We validated the proposed frame-
work using the XJTU-SY and PRONOSTIA benchmark 
datasets.

5.1  Future work

While the findings of this research are promising, there 
is still room for improvement. We observed that CARLE 
struggles with early fault detection (see Fig.  9(a(xii-xiii), 
b(xvii))). Early degradation detection could be improved 
by incorporating a physics-guided loss to better capture 
subtle changes in the initial stages of degradation. Cross-
domain validation experiments indicate that further hyper-
parameter tuning could enhance CARLE’s generalization 

Fig. 13  SHAP explanation for a XJTU-SY; b for PRONOSTIA
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into highly localized oscillations called wavelets, provid-
ing better time–frequency analysis. The CWT uses basis 
functions that are scaled and shifted versions of the time-
localized wavelet, enabling the creation of a time-frequency 
representation of a signal with excellent localization in both 
time and frequency. The mathematical expression of the 
CWT is as follows:

Γ(a, b) =
ˆ ∞

−∞
I(t)ψ∗

(
t − b

a

)
dt� (18)

where Γ(a, b) represents the wavelet coefficients at scale 
a and translation b, I(t) represents the nonstationary sig-
nal, and ψ(t) represents the mother wavelet function. We 
selected the Morlet wavelet Farge (1992) as the mother 
wavelet for time-frequency representation (TFR) extraction 
due to its similarity to the bearing impulse response Zhu 
et  al. (2018) and its favorable trade-off between time and 
frequency resolution. In particular, its frequency resolution 
improves at higher values of a, while the time resolution 
improves at lower values Lin and Liangsheng (2000). The 
Morlet wavelet is defined as a sinusoidal function modu-
lated by a Gaussian envelope with a central frequency fc 
and is given by:

ψ(t) = e
ifct
2π e−t2/2� (19)

A.3 Long Short-Term Memory (LSTM)

The LSTM network is a class of deep recurrent networks 
designed to capture long-term time dependencies from data. 
LSTM utilizes specialized gates, i.e., an input gate It, a 

Appendix

A Preliminaries

In this section, we provide an overview of some building 
blocks of our proposed framework.

A.1 Gaussian filter

The Gaussian filter G(x) is a smoothing filter commonly 
used to reduce noise, smooth data, and extract trends from 
non-stationary signals, which are crucial in predicting the 
RUL. It applies a weighted averaging operation to the sig-
nal, ensuring that values closer to the center of the filter 
contribute more to the result than those farther away. The 
mathematical expression of the Gaussian function is given 
by:

G(x) = 1√
2πσ2

g

e−
x2

d
2σ2

� (17)

where xd is the distance from the center of the filter. σg  is 
the standard deviation of the Gaussian distribution, which 
controls the width of the Gaussian curve and determines the 
degree of smoothness.

A.2 Continuous wavelet transform

The Continuous Wavelet Transform (CWT) is a powerful 
mathematical tool that decomposes a time-varying signal 

Fig. 14  Structure of the LSTM 
network
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B Implementation

In this section, we provide the hyperparameters for both 
XJTU-SY and PRONOSTIA and the training regularization 
and optimizations that we use in our implementation.

forget gate Ft, and an output gate Ot, to regulate the flow of 
information, allowing selective retention and forgetting of 
information. This ability makes LSTM ideal for modeling 
time series data that exhibit long-term dependencies such as 
the gradual degradation of rolling element bearings, provid-
ing a more accurate RUL estimation Hochreiter (1997). The 
structure of an LSTM network is shown in Fig. 14, and the 
output of an LSTM network can be mathematically mod-
eled as:

Ht = N N (It, Ht−1) =




Ct = ϕ(Wg[Ht−1, Xt] + bg)
It = σ(Wi[Ht−1, Xt] + bi)
Ft = σ(Wf [Ht−1, Xt] + bf )
Ot = σ(Wo[Ht−1, Xt] + bo)
St = Ct ⊙ Xt + St−1 ⊙ Ft

Ht = Ot ⊙ ϕ(St)

� (20)

A.4 Random forest regressor

Random Forest Regression (RFR) is a supervised learning 
algorithm that employs an ensemble learning method for 
regression tasks based on the bagging technique. In RFR, 
the trees operate in parallel, meaning that there is no interac-
tion between them during the training process. Each tree is 
trained on a random subset of the features, and the final pre-
diction is obtained by averaging the outputs of all the trees 
Segal (2004). We chose RFR for its accuracy, robustness, 
and ability to handle nonlinear relationships effectively in 
data, making it particularly suitable for RUL estimation, 
where complex interactions and temporal patterns are cru-
cial. A schematic diagram of RFR is shown in Fig. 15.

Table 6  Hyperparameter comparison of CARLE (XJTU-SY vs PRO-
NOSTIA)
Block Hyperparameter XJTU-SY PRONOSTIA
Res-CNN CNN Layers 4 4

CNN Filters [256, 256, 128, 
64]

[64, 64, 32, 
32]

Kernel Sizes [3, 3, 2, 2] [3, 3, 2, 2]
Padding Same Same
Regularization (λ) 0.005 0.005
Activation ReLU ReLU
Pooling Size 1 

(MaxPooling1D)
1 (Max-
Pooling1D)

Residual 
Connections

Applied Applied

Multi-Head 
Attention

8 Heads, 64 
Dim

8 Heads, 64 
Dim

Res-LSTM LSTM Layers 2 2
LSTM Units [64,64] [64,64]
Statefulness False False
Return Sequences True True
Residual 
Connections

Applied Applied

Multi-Head 
Attention

8 Heads, 64 
Dim

8 Heads, 64 
Dim

Flatten Layer Applied Applied
Linear Linear Layers 3 3

Linear Units [128, 64, 32] [64, 48, 32]
Random 
Forest 
Regressor 
(RFR)

No. of trees 800 800

Fig. 15  Structure of the RFR 
algorithm
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Algorithm 2  Training and Testing of CARLE

the model converges to the best possible solution despite 
hardware constraints, we incorporate several callbacks: 
ResetStateCallback to reset model states between epochs, 
EarlyStopping to halt training if validation loss stagnates for 
multiple epochs, ReduceLROnPlateau to adjust the learn-
ing rate on MSE dynamically, and ModelCheckpoint to save 
the best training weights. These optimizations collectively 
enhance both training efficiency and model performance.

B.1 Training setup

We trained our CARLE on an Intel Core i5-7200U with 
16 GB RAM and no GPU. The model was implemented in 
Python 3.10 using Tensorflow 2.18. Due to computational 
limitations and to make training efficient, we applied various 
optimizations to improve training efficiency. To ensure that 

Fig. 16  Training statistics of CARLE (XJTU-SY)
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moderate training setup. On low-end hardware, these pro-
cessing times suggest that while training may be slower, the 
inference step, critical for real-time localized prognostics, 
remains feasible, as the model’s small size and low compu-
tational complexity enable fast forward passes even without 
high-end resources.
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