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Abstract

Prognostic health management (PHM) systems have extensive applications in industry for monitoring and predicting the
health status of equipment. Remaining Useful Life (RUL) estimation stands out as one important part of a PHM system
that predicts the remaining operational lifespan of mechanical systems or their components, such as rolling element bear-
ings, which account for a high proportion of machinery failures. Although many methods for RUL estimation have been
developed, there are some challenges in terms of generalizability and robustness under dynamic operating conditions.
This paper introduces the CARLE Al framework, which integrates advanced deep learning architectures with shallow
machine learning technique to overcome these limitations. CARLE integrates Res-CNN and Res-LSTM blocks with multi-
head attention and residual connections to capture spatial and temporal degradation trends coupled with Random Forest
Regression (RFR) for robust and accurate predictions. We further propose a compact feature extraction framework that
implements Gaussian filtering for efficient noise reduction and Continuous Wavelet Transform (CWT) for time—frequency
feature extraction. We assessed the effectiveness of the proposed framework via the XJTU-SY and PRONOSTIA bearing
datasets. Ablation experiments were conducted to assess the contribution of each component within CARLE, whereas
noise experiments evaluated its resilience to noise. Cross-domain validation experiments were performed to examine the
model’s generalizability across multiple domains. Additionally, comparative analyses with several state-of-the-art methods
under dynamic operating conditions demonstrated that CARLE outperformed competing approaches, particularly in terms
of generalizability to unseen scenarios. Furthermore, we discuss the reliability and trustworthiness of this framework via
multiple state-of-the-art explainable Al (XAI) techniques, i.e., LIME and SHAP.
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1 Introduction

Prognostic Health Management (PHM) systems play cru-
cial roles in industries as they monitor and predict equip-
ment health conditions to prevent severe operational safety
hazards and ensure accident-free processes. One salient
feature of PHM systems is Remaining Useful Life (RUL)
estimation, which concentrates on estimating the remain-
ing effective lifespan of machinery or its components.
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Rotational machinery is more prone to failure because of
the availability of rolling-element bearings working under
aggressive environments. It has been estimated that 40 to
50% of machinery failures can be attributed to these bear-
ings Zhuang et al. (2021). Therefore, an accurate RUL
estimation system for rolling-element bearings is essential
for monitoring degradation, mitigating risks, and prevent-
ing unexpected breakdowns. Recently, various methods
have been developed for this purpose and can generally be
divided into physics-based and data-driven models.
Physics-based models provide insights into the degra-
dation processes of bearings via a set of equations derived
from mathematical representations of physical systems. Guo
et al. (2015) proposed a physics-based model for bearing
degradation based on Hertzian contact theory and material
fatigue that effectively predicts nonlinear degradation under
varying operational conditions. Wu et al. (2016) proposed
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a model with elastic deformation and stress distribution in
ball bearings for simulating the initiation and development
of spalls to show the merits of contact mechanics in under-
standing the early evolution of faults. Although these meth-
ods have achieved notable accomplishments, they require
broad interdisciplinary knowledge and depend upon com-
plicated mathematical modeling.

Data-driven methods uncover the hidden relationships
within condition monitoring data. Further, it can be divided
into two subcategories: shallow machine learning and deep
learning. Bienefeld et al. (2022) explored Radom Forest (RF)
performance in RUL estimation of rolling-element bearings
using an extended feature engineering strategy involving
the time domain, frequency domain, and statistical features
extracted from vibrational signals. Zhang et al. (2021) pro-
posed a Relevance Vector Machine RVM-coupled method
that integrates the advantages of health indication fusion
to create one unified health indicator out of a set of vibra-
tional and temperature-motivated features. The number of
developments in monitoring data acquisition continues to
increase significantly, making meaningful feature extraction
of monitored multisensory data even more crucial for RUL
estimation. However, most shallow machine learning algo-
rithms have notable limitations in dealing with big data in
terms of prediction accuracy and computational efficiency.

Deep learning architectures are designed to capture and
represent rich patterns in big data through the composition
of a neural network made of multiple hidden layers com-
posed of perceptrons. Advanced deep learning algorithms,
including CNN Alzubaidi et al. (2021), recurrent networks
such as LSTM Hochreiter (1997) and GRU Chung et al.
(2014), and attention mechanisms Vaswani (2017) have
proven highly efficient in uncovering hidden relationships
within big data learning for RUL estimation of rolling ele-
ment bearings. Li et al. (2019) proposed a CNN-based
approach using vibrational signal spectrograms and dem-
onstrated very good performance, thus proving its ability
to learn nonlinear degradation trends distinguishing subtle
data variations in data. However, CNNs struggle to model
temporal degradation trends and long-term time dependen-
cies within big data, limiting their real-world applicability.
Zhang et al. (2018) utilized an LSTM-based network that
effectively models long-term dependencies and captures
temporal degradation features within massive datasets;
however, its sensitivity to hyperparameters, overfitting and
lack of noise handling limit its accuracy. Li et al. (2023)
proposed a GRU-based DeepAR network that was efficient
in modeling temporal dependencies with parameters and an
adaptive failure threshold. However, it is sensitive to noise
and often requires careful tuning in complex cases. Deng
et al. (2023) presented a calibrated hybrid transfer learn-
ing framework including a dynamic rolling bearing model,
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particle filter-based calibration, and a physics-informed
Bayesian deep dynamic network for improving fidel-
ity. However, it is still computationally intensive and has
limited applicability in real-world conditions. Zhao et al.
(2023) proposed Multiscale Integrated Self-Attention that
performs with multisensory degrading data at various scales
by employing a multiscale CNN block including a self—
attention mechanism, a recurrent network module and fea-
ture fusion to extract multisensory-temporal features on the
basis of their relationships and integrate them via mutual
interaction. Although this approach improves prediction
accuracy through an efficient loss function, it is hindered by
varying sensor quality and data noise.

In addition to the individual limitations mentioned
above, several other common challenges demand attention.
Most of the methods reported in the literature are task-ori-
ented, diminishing their real-world applicability for many
industrial machinery operations where real conditions are
highly variable. The second significant limitation concerns
the generalizability and robustness of RUL prediction sys-
tems, which heavily depend on effective feature extraction.
Most existing approaches do not have a robust and compact
framework for feature engineering; hence, they have limited
reliability when dealing with big data. Another limitation
concerns the fact that they are not transparent. Predictions
are given in a black-box way, without underlining any fac-
tors of rationale that may contribute to supporting such an
outcome. Therefore, the inability of the data-driven RUL
model to offer interpretability or explainability raises con-
cerns regarding dependability and trust.

Given these drawbacks, we propose a causal RUL esti-
mation system that learns from one working condition and
generalizes its learning to others. We aim to achieve this
goal by designing a compact feature extractor framework
that accounts for noise and provides a concise feature vector
for the AI system. For the Al system, we introduce CARLE
(Deep Ensemble Residual Convolutional-Attention LSTM
Network) consisting of four distinct network blocks: Res-
CNN block, Res-LSTM block, Linear block and ML block.
The Res-CNN block comprises several convolutional layers
that extract spatial degradation trends from the input vector.
These features are passed to a multi-head attention mecha-
nism (MHA) that selects the most relevant spatial features,
suppresses redundant features, and enables differential
treatment of features by scanning global information. The
output is subsequently fed into the Res-LSTM network to
capture temporal dependencies and long-term relationships
between features. Residual connections between the CNN
and LSTM layers are introduced to increase the robustness
and generalizability of the system while also easing the
computational complexity associated with each architec-
ture. Several linear layers are introduced in the Linear block
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to recognize patterns and generate a logit vector, which
serves as input for the ML block that contains the Random
Forest Regression (RFR) for the final prediction. We vali-
date the performance of the system on the XJTU-SY and
PRONOSTIA bearing datasets. We also discuss the trust-
worthiness of the Al framework via state-of-the-art explain-
able Al (XAI) techniques called LIME and SHAP, which
allow us to assess whether the output prediction is reliable.
The highlights of this research are listed below.

1. A compact time-frequency feature extraction frame-
work is designed to handle noise via a Gaussian filter
and to extract diverse features from multichannel sen-
sory data in both the time and frequency domains using
Continuous Wavelet Transform (CWT).

2. Anovel CARLE Al system is designed for rolling-ele-
ment bearings RUL estimation. The system ensemble
the pattern-learning strength of multiple deep-learning
architectures with the generalizability and robustness of
shallow machine-learning algorithm.

3. The effectiveness of the algorithm is validated on the
XJTU-SY and PRONOSTIA bearing degradation
datasets, which include data from multiple operating
conditions.

4. The reliability and trustworthiness of the proposed
black-box framework are analyzed through multiple
state-of-the-art XAl techniques, i.e., LIME and SHAP.
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Fig. 1 Signal-to-Noise ratio (SNR) analysis w.r.t o4. The analysis
shows the balance between noise reduction and signal preservation.
When no smoothing is applied, the SNR remains high due to pres-
ervation of the original signal’s fidelity. As the smoothing parameter
increases, the filtering mechanism effectively reduces high-frequency
noise. However, the process simultaneously diminishes the finer details
and dynamic components of the signal, resulting in a rapid decline in
the SNR. After a certain smoothing intensity, noise reduction occurs at
the cost of negligible signal distortion (o4 ~ 0.75 for XJTU-SY and
o4 ~ 1.1 for PRONOSTIA). This stabilization point signifies an opti-
mal parameter range where the balance between noise suppression and
signal integrity is achieved

The remainder of the paper is organized as follows: Sec-
tion 2 outlines the methodology and algorithms utilized in
the research. Section 4 presents the experimental results and
analysis of the proposed framework. Section 5 concludes
the research by discussing potential future work and areas
for improvement. The appendix presents an overview of the
foundational elements of the proposed framework, includ-
ing a discussion on the feature extraction algorithms and
training setup with hyperparameters of our implementation.

2 Time-frequency feature extraction
framework

The monitoring data from rolling element bearings typically
consist of signals from multiple sensors, often exhibiting
time-varying characteristics with perturbations, primarily
thermal noise caused by changing operating conditions and
temperature variations. To ensure effective analysis, a com-
pact feature engineering preprocessing step is essential to
filter out these perturbations before training the Al system
(see Algorithm 1). Otherwise, the perturbations can signifi-
cantly degrade the performance of the system. Assuming
that the number of sensors is [V, and the data length is L,
the raw data are represented as:

I=[i,io,... 00, ik =[ng,np,...,nk] (1)
where i), represents the sensor reading at timestep & for N,
channels. We filtered out the obtained raw data via Gauss-
ian filter to smooth the edges and reduce short-term fluc-
tuations. The choice of Gaussian filter is motivated by its
effectiveness in reducing Gaussian noise while preserving
signal edges, offering computational efficiency and reli-
able smoothing compared to the Fourier transform Brace-
well (1989) or EMD methods Stallone et al. (2020). Let
the filtered signal be denoted as I¢(t). The smooth signal is
obtained by convolving the raw signal with the Gaussian fil-
ter (G(x)) (see Appendix A), represented mathematically as:

I (t) = /OO I(T)G(t —7)dr )

— 00

The value of the standard deviation o, for the Gaussian filter
plays a critical role in this process. It controls the degree of
smoothing applied to the signal. After experimenting with
various values and analyzing the signal-to-noise (SNR) (see
Fig. 1), we find the optimal balance for our use cases, effec-
tively filtering out noise and thermal perturbations while
preserving critical information essential for RUL estima-
tion. The filtered signal I¢(t) is then forwarded to the CWT
(see Appendix A) for feature extraction. However, before
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applying the CWT, the signal is divided into smaller seg-
ments using a windowing technique. The window operation
can be represented as:

iw(t) = Tp(t) - wi(t) 3)

where w; (t) is the window function with window length 77,
for the i-th segment, defined as:

)1 it ettt + Tl
wi(t) = { 0 otherwise. “4)

By breaking down the signal into smaller segments, the
CWT ensures that localized time—frequency features are
captured, which is vital for accurately modeling degrada-
tion trends for accurate RUL estimation. The CWT can then
be mathematically computed as:

Dy, b) = / " () (“’) dat 5)

oo a

where T';,,(a, b) represents the wavelet coefficients of the
windowed signal and where v is the Morlet wavelet. To
extract meaningful features from the CWT, it is critical to
carefully select the frequency range of interest ( fmin, fmax)»
as this range defines the scale range of the CWT. The choice
of these frequencies is informed by the system’s operational
condition f,, allowing the model to accommodate multiple
scenarios effectively. In our implementation, we considered
up to the third harmonic, providing a good balance between
computational efficiency and capturing useful features. The
frequency bounds are as follows:

Jo

?7 fmax ~ '?’fo (6)

.~
fmln ~

The corresponding wavelet transform scales can be calcu-
lated as:

fe _ Je

Gmin = 5y Gmax =
fmax : Tsampling fmin : Tsamp]ing

()

where Tsampling = 1/ fsampling 18 the period of the sampled
vibrational signal and f. is the central frequency of the Mor-
let wavelet, typically chosen as f. = 0.81, to govern the
trade-off between time and frequency resolutions. To ensure
comprehensive coverage of the frequency range, logarith-
mically spaced scales are used:

i=1,2,...,N )

a; € [amirn amax]7
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where N is the number of scales selected on the basis of
the desired resolution in the time—frequency domain. Figure
2 presents the visual representation of the compact feature
extractor framework. The following time—frequency rep-
resentation (TFR) features are derived to characterize the
system’s physical state:

e Energy (F): represents the vibrational activity of the
system. A continuous increase in energy typically corre-
lates with progressive wear or distributed fatigue within
the system, often evident as surface pitting. In contrast,
sudden spikes indicate localized defects, such as spall-
ing or crack propagation Randall and Antoni (2011);
Smith and Randall (2015). Lubrication failures contrib-
ute to significant fluctuations, primarily due to the oc-
currence of intermittent metal-to-metal contact, whereas
contamination, such as ingress of debris, results in tran-
sient energy spikes. The energy is computed as:

M

E=Y" T, (b)) ©)

m=1

e Dominant frequency (f;): corresponds to the frequen-
cy at which the systems exhibit the highest energy con-
centration. Shifts in f; can serve as a diagnostic tool
for identifying specific faults within the system. Align-
ments with bearing fault frequencies, such as the ball
pass frequency, are indicative of localized defects, com-
monly in the form of inner or outer race cracks (BPFO/
BPFI) Borghesani et al. (2013); Tandon and Choudhury
(1999). The presence of subharmonic components in fg
suggests potential issues such as looseness or imbal-
ance within the system. Broadband frequency-domain
profiles are characteristics of chaotic faults, which are
typically associated with lubrication failures or contami-
nation, as they introduce fluctuations in the system’s be-
havior. The dominant frequency is calculated as:

fd = ascale(argmax(E)) (10)

e Entropy (h): measures the vibrational randomness
within the system. Elevated entropy values suggest non-
stationary defects, such as irregular spalling or loose-
ness. In the case of lubrication failure, the entropy in-
creases due to erratic friction, while corrosion-related
damage leads to increased entropy through surface in-
teractions. Early-stage fatigue typically indicates low
entropy, which escalates as the degradation process be-
comes more chaotic. The entropy is calculated as:
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Fig. 2 Schematic diagram of the compact feature extractor framework
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o Kurtosis (K): detects transient impacts by analyzing
extreme deviations in the signal distribution. The high-
est kurtosis values are typically associated with local-
ized defects, including fatigue cracks, electrical pitting,
and particle collisions caused by contamination Antoni
(2006). Kurtosis is calculated as follows:

the mean is often associated with distributed wear pro-
cesses, such as corrosion or thermal degradation, where-
as a sudden shift typically signals more severe faults,
such as cage features. Lubrication failures can elevate
the mean due to an increase in friction in the system.
The mean is calculated as:

1
E[(iy — p)* p== 2 twlm) (14)
K — M (12) N mz:%
o
o Skewness (s;): measures the asymmetry in the distribu- e Standard deviation (0): represents the variability of

tion of signal data. Positive skewness typically indicates
unidirectional impacts, such as brinelling, while nega-
tive skewness suggests repetitive low-energy events,
like the initiation of cracks. Asymmetric wear patterns
resulting from thermal warping or corrosion also mani-
fest as deviations in skewness, highlighting an imbal-
ance in the system’s behavior. The skewness is calcu-
lated as:

- ]E[(Zw _N)B] (13)

the signal. High values indicate unstable faults such as
looseness or contamination, which cause erratic behav-
ior. Conversely, fatigue cracks contribute to increased
variability during intermittent spalling events, indicat-
ing ongoing damage and instability in the system. The
standard deviation is calculated as:

1 m
7 2w (m) — p)? (15)
M i=1
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Fig.3 The schematic diagram of
the CARLE Al system
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Fig.4 Schematic diagram of the Res-CNN block

While many existing approaches Lei et al. (2007); Wenjian
et al. (2024); Abdellatief et al. (2025); Abdellatief et al.
(2025) use 20 or more TFR features, we extract only seven
physically meaningful features, reducing offline computa-
tion time by on average 66%. Integrating these features,
such as transient detection through K and h, with long-term
trend analysis via ¢ and o can enhance RUL estimation.
An increase in p with intermittent spikes in K indicates
progressive wear punctuated by transient damage events.
This allows for adaptive RUL updates that account for both
ongoing wear and irregular fault occurrences. Similarly, the
chaotic behavior observed in sy and shifts in f; improve
prognostic accuracy by isolating fault-specific degradation
pathways, allowing for a more precise RUL.

MultiHeadAttention

BatchNormalization
Activation
MaxPooling1D
BatchNormalization
Activation
MaxPooling1D

3 CARLE framework

We propose CARLE (Deep Ensemble Residual Convolu-
tional-Attention LSTM Network) for the accurate RUL
estimation in rolling element bearings. Unlike stacking-
based ensembles that primarily combine base learners Ture
et al. (2024), CNN-Bi-LSTM approaches designed around
predictive maintenance policies Wang et al. (2024), or data
fusion methods with stage division Li et al. (2024), CARLE
integrates residual CNNs, attention-driven LSTMs, and
Random Forest Regression into a single unified framework.
This design preserves spatial-temporal degradation features
and enhances adaptability to unseen operating conditions,

Require: Non-stationary vibrational signal (I(t)), o4, number of sensors (NN), window length (T,,), sampling fre-

quency (fs),
1: Initialize Gaussian filter: G(t)

2

z

1 e 273
2moy

: Calculate filtered signal: I;(t) = [* I(1)G(t —7)dr

2
3: Initialize window function: w(t) < Equation 4
4: Initialize central frequency: f. = 0.81
5! Qmin, Gmax — Equation 7
6: Ascale < Equation 8

7: forn=1... N, do

8 fork=1...len(If(t)) — T, do

9: Compute window signal: i,,(k) + Equation 3.

10: Compute wavelet coefficients: I';  (a, b) < Equation 5
11: Compute energy: F,, < Equation 9

12: Compute dominant frequency: fg, < Equation 10
13: Compute entropy: h,, < Equation 11

14: Compute kurtosis: k,, <— Equation 12

15: Compute skewness: sk,, <— Equation 13

16: Compute mean: f,, - Equation 14

17: Compute standard deviation: o,, <— Equation 15
18: Ifun <~ [log(En)afdn-,hnaknysknaun7a-n]

19: end for

20: end for

21: va = Concat(lfvl,[fv2 "'IfUNa.)
22: return Iy,

Algorithm 1 Time—frequency Feature Extraction Framework
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Fig.5 Schematic diagram of the
Res-RNN block
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Fig. 6 The schematic diagram of
Linear block
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providing broader generalization across diverse require-
ments. A schematic diagram of CARLE is shown in Fig.
3. The CARLE architecture comprises four interconnected
blocks:

Res-CNN Block: receives the input feature vector (I, )
and processes it through multiple convolutional heads, each
employing distinct filter and kernel sizes to extract salient
degradation features. The MHA mechanism is incorporated
at the output to enhance feature selection, allowing the model
to prioritize relevant degradation features while minimizing
redundant information. Additionally, residual connections
are integrated to facilitate identity mapping, ensuring that
vital features are retained and propagated throughout the
network. This helps maintain accuracy in RUL predictions
as the complexity increases. The schematic diagram of the
Res-CNN is shown in Fig. 4.

Res-RNN Block: receives the spatial degradation trends
from the Res-CNN and processes them through a series of
LSTM layers to capture the temporal characteristics and
long-term dependencies inherent in the degradation fea-
tures. Similar to the CNN block, a multi-head attention
mechanism and residual connections are incorporated to
enhance the focus on significant features and preserve criti-
cal information across layers. The schematic diagram of the
Res-RNN is shown in Fig. 5.

Linear Block: consists of a series of fully connected
layers tasked with recognizing patterns within the tempo-
ral degradation features, enabling the model to generalize
effectively across diverse, unseen operating conditions. The
output is a logit vector, which serves as input for the subse-
quent prediction mechanism. The schematic diagram of the
Linear block is shown in Fig. 6.

Linear_Input

MultiHeadAttention
Activation
MultiHeadAttention

Activation
Activation
Activation

Machine Learning Block: The Random Forest Regres-
sion (RFR) model receives the logit vector from the linear
block to enhance the generalization capabilities for new
data, providing diverse perspectives and flexibility. RFR
enhances generalization because it aggregates predictions
from many decision trees trained on different subsets of the
data and features. This ensemble averaging reduces over-
fitting, mitigates the effect of noise or outliers, and allows
the model to capture diverse nonlinear relationships in the
degradation features, making RUL predictions more robust
to unseen operating conditions.

The stacking of these modules—CNN — Attention —
LSTM — RFR-is deliberate. It reflects a layered processing
approach: starting with low-level feature extraction, pro-
gressing to global pattern discovery, and concluding with
structured temporal reasoning. This combination offers a
comprehensive understanding of the degradation process,
improving the robustness and accuracy of RUL predictions.

4 Experimental results and analysis
4.1 Dataset explanation

XJTU-SY dataset: developed through a collaboration
between Xi’an Jiaotong University and Changxing Sumy-
oung Technology for experimentation and validation of
RUL algorithms Wang et al. (2018). The dataset includes
run-to-failure vibration data from 15 rolling element bear-
ings obtained through accelerated degradation experiments
under three distinct operational conditions: 1200 rpm (35
Hz) with a 12 kN radial load, 2250 rpm (37.5 Hz) with an
11 kN radial load, and 2400 rpm (40 Hz) with a 10 kN radial
load. Vibration signals were captured via accelerometers
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Fig. 8 RUL labels for both datasets

mounted on horizontal and vertical axes, sampled at a fre-
quency (fsampie) Of 25 kHz, and recorded at one-minute
intervals, with each sample comprising 1.28 seconds of
data. The experimental testbed is depicted in Fig. 7(a). For
training, data from the f, = 35Hz condition (1200 rpm
with a 12 kN load) were used, while validation focused on
evaluating generalizability using data from the f, = 40Hz
condition (2400 rpm with a 10 kN load) and f, = 37.5 con-
dition (2250 rpm with an 11 kN load).

PRONOSTIA dataset: is a benchmark dataset widely
used for research in condition monitoring and RUL analysis
of rolling element bearings; it was developed as part of the
PRONOSTIA experimental platform Nectoux et al. (2012).
The dataset provides 16 complete run-to-failure data col-
lected under accelerated degradation conditions with three
distinct operational conditions: 1800 rpm (100 Hz) with a
4 kN radial load, 1650 rpm (100 Hz) with a 4.2 kN radial
load, and 1500 rpm (100 Hz) with a 5 kN radial load. Vibra-
tion signals were captured via accelerometers mounted on
the horizontal and vertical axes and sampled at 25.6 kHz,
whereas temperature data were sampled at 10 Hz. Figure

@ Springer

7(b) provides the testbed to capture the data. For training,
we utilized 3 bearing data from 4KN operating conditions
which is about 52% of total samples, and for validation, we
focused on evaluating generalizability using data from 4.2
kN and 5 kN and ignored temperature data.

4.2 RUL labels

Generating RUL labels is a crucial step in estimating remain-
ing useful life. Some studies assume degradation occurs at
a constant rate Luo and Zhang (2022); Yong et al. (2024);
Deng et al. (2023), but real-world conditions rarely follow a
perfectly linear pattern. Instead, degradation often occurs in
a nonlinear, piecewise manner, as suggested in other stud-
ies Zhao et al. (2023); Yin et al. (2025); Al-Dulaimi et al.
(2019). To explore both possibilities, we created labels for
the XJTU-SY dataset based on linear degradation models,
visualized in Fig. 8 using a log scale for clarity. Since long-
term monitoring data form a time series, the initial operation
phase is typically stable, with minimal noticeable degrada-
tion. Therefore, for the PRONOSTIA dataset, we applied
the nonlinear, piecewise degradation model shown in Fig.
8 to more accurately represent how bearing performance
decreases over time.

4.3 Evaluation indicators

For evaluation, we utilized two metrics: the mean absolute
error (MAE) and the root mean square error (MSE). A brief
description of these metrics is as follows:

MAE: is widely used in RUL analysis to quantify the
accuracy of predictive models. It measures the average
magnitude of absolute errors between the predicted RUL
(y;) and the true RUL (g;), regardless of direction. The
mathematical expression is as follows:
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1 n
MAE = — = i
=D lvi — il

i=1

where n is the total number of predictions. The MAE is
particularly suitable for RUL analysis because it equally
penalizes overpredictions and underpredictions, ensuring an
unbiased evaluation of the model’s ability to estimate the
RUL.

MSE: calculates the square root of the average squared
differences between the predicted RUL (y;) and the true
RUL (%;). It is given by:

Owing to the squaring of differences, the MSE penalizes
larger errors more heavily. This makes it sensitive to signifi-
cant prediction deviations, emphasizing the model’s ability
to minimize large prediction errors.

Score is a metric specifically designed for RUL estima-
tion in the IEEE PHM Nectoux et al. (2012) to score the
estimates. The scoring function is asymmetric and penal-
izes overestimations more heavily than early predictions.
This reflects practical considerations, as late maintenance
prediction can lead to unexpected failures with more severe
consequences than early intervention can.

Score = Z (e_ Ht 1) + Z (eyifﬂyi — 1) (16)

119 <yi 19 2y

4.4 Ablation experiments

Ablation experiments of CARLE were conducted to validate
the effectiveness of each constituent of the architecture. We
compared CARLE against its three variants: CARL with-
out ensemble learning, CRLE without MHA, and CALE
without residual connections. We noticed that CARLE and
CALE performed very closely in terms of training oper-
ating conditions, but CARLE was marginally better than
CALE. However, CARLE performed much better under
unseen operating conditions, highlighting the role of resid-
ual connections in enhancing robustness. In contrast, both
CRLE and CARL performed very poorly, with CARL being
unsuitable for practical use. The ensemble machine learning
approach yielded the most significant performance gains. A
detailed comparison of both XJTU-SY and PRONOSTIA is
shown in Fig. 9(a) and (b), while evaluation metrics are pro-
vided in Tables 1 and 2, respectively. For the sake of result
explanations, we selected Bearing 3 under representative

operating conditions from each operating condition and
dataset.
For the XJTU dataset:

e 35Hz12kN: (Figure 9(a-iii)): CARLE achieved the
lowest error with an MSE of 0.00220, MAE of 0.04087
and Score of 130.016. CALE followed closely with an
MSE of 0.00265 (116%), MAE of 0.04561 (110%) and
Score of 144.2532. CRLE recorded an MSE of 0.00275
(120%), MAE of 0.04747 (113%) and Score of 149.22,
while CARL performed the worst with an MSE of
0.00806 (172%), MAE of 0.07905 (148%) and Score
0f250.3705.

e 37.5Hz11kN: (Figure 9(a-viii)): CARLE achieved an
MSE 0f0.01407, MAE 0f0.10697 and Score of 1083.53.
CALE showed slightly better MSE (0.01388, [1.3%)
but nearly identical MAE (0.10701, 10.03%) with Score
of 1081.08. CARL showed an MSE of 0.021 (133%),
MAE 0of 0.13195 (119%) and Score of 1334.1443, while
CRLE yielded an MSE of 0.02340 (139.87%), MAE of
0.13731 (122%) and Score of 1411.7924.

e 40Hz10kN: (Figure 9(a-xiii)): CARLE maintained
strong performance with an MSE of 0.03085, MAE of
0.15631 and Score of 331.6710. CALE demonstrated
marginal improvements with an MSE of 0.02781 (|
9.8%), MAE of 0.14869 (}4.8%) and Score of 323.87.
Conversely, CARL and CRLE again exhibited degraded
performance, recording MSEs of 0.05309 (142%) and
0.05481 (143%), MAEs of 0.20083 (122%) and 0.20161
(122.4%) and Score of 424.47 and 420.05, respectively.

For the PRONOSTIA dataset:

o 100Hz4KkN: (Figure 9(b-iii)): CARLE achieved superior
performance with an MSE of 0.00029, MAE of 0.01312
and Score 0f60.912. CALE showed reduced accuracy
with an MSE of 0.00094 (160%), MAE of 0.02538 (1
48.3%) and Score of 64.2970. CRLE performed moder-
ately, with an MSE 0f 0.00049 (140%), MAE 0f 0.01723
(123.8%) and Score of 59.89, while CARL reached an
MSE of 0.00033 (112.1%), MAE of 0.01294 (}1.2%)
and Score of 64.2970.

e 100Hz4.2kN: (Figure 9(b-x)): CARLE achieved an
MSE 0f0.00831, MAE 0f 0.07488 and Score of 72.5470.
CALE yielded an MSE of 0.01240 (132.9%), MAE of
0.09776 (123.4%) and Score of 96.5710. Interestingly,
CRLE outperformed CARLE here, recording an MSE
0f 0.00601 (J10%), MAE of 0.04195 ({56%) and Score
of 66.5046. CARL also showed strong results, with an
MSE of 0.00601 ({27.6%), MAE of 0.03408 ({54.4%)
and Score of 229.629.
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Fig. 9 Ablation experiment prediction a XJTU-SY; b PRONOSTIA with fault types
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Table 1 Ablation experiment (XJTU-SY)

Bearing Model 35Hz12kN 37.5Hz11kN 40Hz10kN
MSE MAE Score MSE MAE Score MSE MAE Score
Bearing 1 CARLE  0.00345 0.05157 122.5423 0.03273 0.16070 1505.8041 0.03314  0.15983 2269.5957
CARL 0.01377  0.09911 234.7118 0.05943 0.21274 1986.9069 0.06752  0.22609  3222.6052
CALE 0.00331 0.05126 121.5300  0.03630  0.16899 1581.9119 0.03954  0.17636  2564.5586
CRLE 0.00398  0.05639 133.9703 0.04990  0.19688 1865.2695 0.05716  0.20893 3030.7470
Bearing2  CARLE  0.00183 0.03692 114.4403 0.00671 0.07308 232.8929 0.06673 0.22032 1708.8516
CARL 0.00376  0.05666 175.5158 0.00883 0.08308 267.3460 0.07617  0.23716 1859.4258
CALE 0.00208  0.04082 125.9960  0.00786  0.06997  236.2859 0.02941 0.15117 1345.2411
CRLE 0.00178  0.03694 113.9618 0.01698 0.11337 368.1130 0.06164  0.21395 1672.4370
Bearing3  CARLE  0.00220  0.04087 130.0166  0.01407  0.10697 1083.5319  0.03085  0.15631 331.6710
CARL 0.00806  0.07905 250.3705 0.02100  0.13195 1334.1443 0.05309  0.20083 424.4746
CALE 0.00265 0.04561 1442532 0.01388 0.10701 1081.0886  0.02781 0.14869  323.8718
CRLE 0.00275 0.04747 149.2223 0.02340  0.13731 1411.7924 0.05481 0.20161 420.0580
Bearing4  CARLE  0.01172 0.09653 2255295  0.02149  0.12591 96.9172 0.03361 0.16221 1396.6897
CARL 0.05099  0.19865  461.9145 0.02965 0.14793 114.1304 0.06197  0.21669 1859.8220
CALE 0.01264  0.10096  236.8543 0.02065 0.11565 85.9529 0.03220  0.15930 1429.6296
CRLE 0.01332  0.10426  245.6415 0.03441 0.16022 124.7697 0.05450  0.20399 1745.6810
BearingS  CARLE  0.00465  0.05938  59.9726 0.01373 0.09903 582.5476 0.09625 0.26167 154.0171
CARL 0.02127  0.12677 128.7710  0.01256  0.09288 547.5211 0.11684 0.28730 169.0601
CALE 0.00486  0.06090  61.3297 0.00985  0.08766  511.8520 0.08958 0.26006 151.7796
CRLE 0.00537  0.06420  64.8331 0.02060  0.12428 750.2275 0.06565  0.22405 130.8896

Bold values indicate the minimum MSE, MAE, and Score for each bearing-condition combination

e 100Hz5kN: (Figure 9(b-xvii)): CARLE recorded
an MSE of 0.14125, MAE of 0.17514 and Score of
37.2298. CALE improved significantly, with an MSE
of 0.02628 (181%), MAE of 0.14068 (].19.6%) and
Score of 30.7763. CRLE achieved an MSE of 0.04916
(160%), MAE of 0.17957 (}2.4%) and 25.7763, while
CARL showed an MSE of 0.06594 ({53%) but a higher
MAE of 0.22075 (126%) with Score of 40.9659.

These findings confirm that each architectural component
within CARLE makes a meaningful contribution to the
overall model performance. Ensemble learning, in particu-
lar, drives substantial accuracy gains, while residual con-
nections and attention mechanisms further support model
generalization, especially in complex or unseen operational
settings.

4.5 Noise experiment

Noise experiments are crucial for evaluating the robustness
and reliability of Al frameworks, particularly in real-world
scenarios where data are affected by sensor noise, environ-
mental variations, or system uncertainties. By introducing
controlled noise into the input data, we can assess the mod-
el’s stability and its ability to generalize beyond ideal con-
ditions. In our experiments, Gaussian noise with a normal
distribution (1 = 0, 0 = 0.1) was added to simulate typical
sensor fluctuations. Additionally, salt-and-pepper noise was
applied randomly to 10% of the data points, representing

sudden sensor failures. Results show that the model is
largely resilient to Gaussian noise, with only minor perfor-
mance degradation on the XJTU-SY dataset (Fig. 10(a)).
Salt-and-pepper noise, however, causes a more significant
performance drop, highlighting a potential limitation for
real-world deployment where sensor spikes or dropouts
can occur due to electrical interference, hardware faults,
or communication errors. In the PRONOSITA evaluation
(Fig. 10(b)), the impact of both noise types is more moder-
ate, indicating that the model can still preserve long-term
bearing degradation patterns. To mitigate the effect of salt-
and-pepper noise in practice, preprocessing filters such as
median or robust statistical filters can remove sudden spikes,
sensor fusion can reduce the influence of any single faulty
measurement, and training with noise-augmented data can
help the model learn to ignore extreme outliers. Addition-
ally, integrating lightweight anomaly detection modules
could flag or correct extreme values in real time, ensuring
more reliable RUL predictions under noisy conditions.

4.6 Cross-domain validation experiments

Cross-domain validation is crucial for assessing the gener-
alizability of Al frameworks when applied to datasets with
differing statistical distributions. It evaluates whether a
model trained on one dataset can maintain predictive per-
formance on another, thereby mitigating overfitting to a
single domain and improving applicability in dynamic envi-
ronments. We evaluate the PRONOSTIA-trained CARLE
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Table 2 Ablation experiment (PRONOSTIA)

Bearing Model 100Hz4kN 100Hz4.2kN 100Hz5kN
MSE MAE Score MSE MAE Score MSE MAE Score

Bearing 1 CARLE  0.00017  0.00890  67.7651 0.00687  0.06874 34.2385 0.03073 0.15232 22.3816

CARL 0.00060  0.01944  52.1498 0.20664  0.39369 125.8891 0.01941 0.12100 26.8461

CALE 0.00130  0.02515 53.3133 0.01075 0.08844 44.6632 0.02536 0.13877 34.7183

CRLE 0.00055 0.01640  64.1635 0.00720  0.07223 34.3931 0.03786 0.17235 41.4252
Bearing2 CARLE  0.00289  0.04268 28.5949 0.00406  0.05340 22.4782 0.04126 0.17514 52.6417

CARL 0.01822 0.10301 53.7729 0.09584  0.26255 69.0456 0.06594 0.22073 114.1094

CALE 0.01010  0.08341 44.0762 0.00706  0.06948 33.5543 0.02629 0.14069 112.8656

CRLE 0.00643 0.06490  37.0388 0.00403 0.05156 26.3432 0.04196 0.17951 137.5010
Bearing3 CARLE  0.00029  0.01312 60.9126 0.00831 0.07488 72.5470 0.14125 0.17514 37.2298

CARL 0.00033 0.01294  53.8716 0.17432  0.34082 229.6209  0.065935 0.220728  40.9659

CALE 0.00094  0.02538 64.2970 0.01240  0.09776 96.5710 0.02628 0.14068 30.4960

CRLE 0.00049  0.01723 59.8920 0.00601 0.041959  66.5046 0.04916 0.17951 25.7763
Bearing4  CARLE  0.00052 0.01635  35.9291 0.01035  0.07616 39.0356 - - -

CARL 0.00237 0.03209  45.9774 0.02068 0.12315 34.4502 - - -

CALE 0.00268 0.04036  36.9779 0.01279  0.09542 38.6783 - - -

CRLE 0.00134  0.02676  37.9885 0.01029  0.08145 38.1909 - - -
Bearing5 CARLE  0.00264  0.03956  69.1269 0.00711 0.06936 91.5711 - - -

CARL 0.00885 0.07636 86.3878 0.08058 0.23612 178.1749 - - -

CALE 0.00999  0.08285 116.8831 0.01398 0.10261 122.0432 - - -

CRLE 0.00605 0.06274  94.7340 0.00878 0.07688 94.7391 - - -
Bearing6 CARLE  0.02014  0.12283 97.9291 0.07713 0.23869 24.9688 - - -

CARL 0.03497 0.13915 205.7567  0.20729  0.39659 98.0300 - - -

CALE 0.03064  0.15598 151.3578 0.03074  0.15201 51.7674 - - -

CRLE 0.05942 0.20851 184.1260  0.03314  0.15922 57.2092 - - -
Bearing7 CARLE  0.00799  0.06877 101.4600  0.00495 0.06176 12.3018 - - -

CARL 0.03480  0.13173 196.0093 0.06695 0.18207 26.0443 - - -

CALE 0.01221 0.08969 122.1526  0.00929  0.08194 11.2305 - - -

CRLE 0.00905 0.07806 108.2637  0.00355  0.05256 8.9416 — — —

Bold values indicate the minimum MSE, MAE, and Score for each bearing-condition combination

model on the XJTU-SY dataset, as both datasets share iden-
tical feature sets derived via Algorithm 1 but differ in label
distributions. To address domain shift, we employ Princi-
pal Component Analysis (PCA) and Correlation Alignment
(CORAL) for feature space alignment. The process involves
feature extraction from both datasets, transformation via
PCA, and distribution alignment using CORAL (see Fig.e
11(a)) before generating predictions. Our analysis (see Fig.
11(b) and Table 3) indicates that the adapted methodology
produces varying prediction accuracy, with notable differ-
ences between CORAL-aligned and non-aligned results.
Specifically, the CORAL-aligned model achieved an MSE
0f 0.0961, MAE of 0.2803, and Score 0f 297.3991, whereas
the non-aligned model achieved an MSE of 0.1049, MAE
0f 0.2919, and Score of 321.70. These discrepancies likely
arise from residual differences in label distributions and
unmodeled domain-specific variations. While the alignment
approach improves feature consistency across datasets, the
remaining prediction error suggests that further optimiza-
tion is needed to enhance model robustness.

@ Springer

4.7 Comparison with baseline methods

To comprehensively evaluate the performance of CARLE,
we conducted comparative experiments against several
baseline methods, including CNN-LSTM Hu et al. (2024),
CNN-BIiLSTM Guo et al. (2023), and MSIDIN Zhao et al.
(2023). For a fair comparison, all competing models were
trained using feature vectors extracted by the proposed
compact feature extractor framework. Additionally, hyper-
parameters for each method, including CARLE, were fine-
tuned using Bayesian Optimization Snoek et al. (2012) with
150 search trials to ensure optimal performance. Under
training operating conditions, most state-of-the-art models
were able to estimate RUL with reasonable accuracy based
on MSE and MAE metrics. However, CARLE consistently
outperformed all other methods across both datasets, with
particularly significant improvements observed under
unseen operating conditions. Detailed comparison metrics
for the XJTU-SY and PRONOSTIA datasets are provided
in Tables 4 and 5, respectively. To further interpret these
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Fig. 10 Noise experiment result for a XJTU-SY; b PRONOSTIA

@ Springer



W. Razzaq, Y.-B. Zhao

a) Feature Space Visualization (First 2 Principal Components)
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Fig. 11 a Feature space alignment using CORAL-PCA; b RUL comparison of CORAL-PCA-aligned and non-aligned

Table 3 Cross-domain Validation Experiment Results

Model MSE MAE Score
With CORAL 0.0961 0.2803 297.3991
Without CORAL 0.1049 0.2919 321.7089

Bold values indicate the minimum MSE, MAE, and Score

results, we examined Bearing 3 under each operating condi-
tion from both datasets.
For the XJTU-SY dataset:

e 35Hz12kN: CARLE demonstrated the best performance

with an MSE of 0.00220, MAE of 0.04087 and Score of
199.61. In comparison, MSIDIN recorded an MSE of

@ Springer

0.04383, MAE of 0.17848 and Score of 494.269. CA-
BiLSTM reached an MSE of 2.41237, MAE of 1.24057
and Score of 3667.2644, while CNN-LSTM exhibited
the poorest accuracy with an MSE of 8.6898, MAE of
1.81207 and Score of 5917.488.

37.5Hz11kN: CARLE maintained superior results
with an MSE of 0.01407, MAE of 0.10697 and Score
of 2798.9778. MSIDIN followed with an MSE of
0.08407, MAE of 0.24669 and Score 2528.81, CABiL-
STM showed degraded performance with an MSE of
0.71245, MAE of 0.67876, Score 6417.187, and CNN-
LSTM further deteriorated to an MSE of 1.19243, MAE
0f 0.63259 and Score of 6304.808.
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Table 4 Comparison with SOTA (XJTU-SY)

Bearing Model 35Hz12kN 37.5Hz11kN 40Hz10kN
MSE MAE Score MSE MAE Score MSE MAE Score
Bearing1 CARLE 0.00345  0.05157 188.36298  0.03273  0.16070  2462.88 0.03314 0.15983  4009.317
CNN-LSTM  7.53585  1.68644  4212.5586  5.53985  1.19735 12144208 15.12136  3.59279  54348.28
CABILSTM  2.31171 1.23203  2790.2166  1.58179  0.90853  8101.4062  5.76011 2.28761  32350.693
MSIDIN 0.05074  0.17379  415.75772  0.08555  0.24885  2385.1533  0.08555 0.25344  3731.8108
Bearing2 CARLE 0.00183  0.03692  217.17297 0.00671  0.07308  991.1647 0.06673 0.22032  2266.9412
CNN-LSTM  2.76083  0.93285 28752263  4.41759  1.27952  4030.5173  0.83365 0.85786  6560.502
CABILSTM  0.92567  0.70848  2034.5358  1.53518  0.96063  2848.8662  1.19016 1.03863  7994.697
MSIDIN 0.05763  0.17848  562.8828 0.12322  0.28668  916.3111 0.08829 0.25199  2094.0076
Bearing3 CARLE 0.00220  0.04087  199.6124 0.01407  0.10697 2798.9778  0.03085 0.15631 530.86194
CNN-LSTM  8.69865  1.81207  5917.488 1.19243  0.63258  6304.898 1.39763 0.76697  1562.1542
CABILSTM  2.41237  1.24057 3667.2644  0.71245 0.67876  6417.187 1.07763 0.88477  1746.2798
MSIDIN 0.04383  0.15704  494.26984  0.08407  0.24669  2528.8157  0.09673 0.26387  554.0628
Bearing4 CARLE 0.01172  0.09653  292.51904  0.02149  0.12591  245.14308  0.03361 0.16221  2362.9336
CNN-LSTM  2.75389  0.81807  1996.5586  2.34120  0.92475  729.2322 0.85732 0.66800  5408.3696
CABILSTM  1.21288  0.81330  1857.263 1.11647  0.87074  651.8345 0.92342 0.82073  6554.092
MSIDIN 0.08448  0.24985  592.63196  0.08910  0.25441  198.84254  0.11538 0.27989  2404.415
Bearing5 CARLE 0.00465  0.05938  92.718994  0.01373  0.09903  1890.4968  0.09625 0.26167  190.29407
CNN-LSTM  3.28659  1.36531  1333.5254  0.78787  0.78197  4740.767 1.34206 1.11198  669.8485
CABILSTM  2.04337  1.19535 1150.7625  0.52122  0.61763  3721.561 1.00430 0.95609  572.3747
MSIDIN 0.06368  0.19819  204.28513  0.11293  0.28494  1821.144 0.35019 0.53957  319.7993

Bold values indicate the minimum MSE, MAE, and Score for each bearing-condition combination across all models

e 40Hz10kN: CARLE achieved an MSE of 0.03805,
MAE of 0.15631 and Score of 530.86. MSIDIN yield-
ed an MSE of 0.09673, MAE of 0.26873 and Score
of 2094.007, CABIiLSTM followed with an MSE of
1.07763, MAE of 0.88477, Score of 1746.2798, and
CNN-LSTM recorded an MSE of 1.39763, MAE of
0.76697 and Score of 1562.1542.

For the PRONOSTIA dataset:

e 100Hz4kN: CARLE again delivered optimal results,
achieving an MSE of 0.00029, MAE of 0.01312 and
Score of 70.195. MSIDIN followed with an MSE of
0.00049, MAE of 0.01723 and Score of 1000.6890,
while CABIiLSTM recorded an MSE of 0.00268, MAE
of 0.04036 and Score of 5860.68. Interestingly, CNN-
LSTM attained an MSE of 0.00033 but slightly outper-
formed CARLE on MAE with a score of 0.01294 and
Score of 1834.09.

e 100Hz4.2kN: CARLE obtained an MSE of 0.00831,
MAE of 0.07488 and Score of 80.114. MSIDIN slight-
ly outperformed CARLE in all metrics, with MSE of
0.00606, MAE of 0.06360 and Score of 530.557. CA-
BiLSTM trailed behind with an MSE of 0.01240, MAE
of 0.09776 and Score of 3550.281, and CNN-LSTM
significantly underperformed, with an MSE of 0.17432,
MAE of 0.34082 and Score of 1312.410.

e 100Hz5kN : CARLE achieved an MSE of 0.14152,
MAE of 0.17514 and Score of 55.231. MSIDIN

reported higher error values with an MSE of 0.15967,
MAE of 0.35579 and Score of 64.344, while CABiL-
STM showed substantial degradation, reaching an MSE
0f 2.18729, MAE of 1.2095 and Score of 233.21. CNN-
LSTM also performed poorly, with an MSE of 1.07811,
MAE of 0.84026 and Score of 150.869.

These findings reinforce CARLE’s ability to generalize
effectively across different operating environments and its
superior accuracy in both seen and unseen conditions. Nota-
bly, even in scenarios where other methods perform com-
petitively under trained settings, CARLE maintains a robust
edge, particularly in generalization to unseen conditions,
which is critical in real-world prognostics applications.

4.8 Explanations

Higher accuracy in an Al system does not necessarily mean
its predictions reflect real-world outcomes Bontempi (2023).
This makes it essential to direct explainable Al (XAI) efforts
toward PHM systems, particularly for remaining useful life
(RUL) analysis of mechanical components, where unex-
pected failures can cause major operational disruptions. In
this study, we applied Local Interpretable Model-Agnostic
Explanations (LIME) Ribeiro et al. (2016) and Shapley
Additive Explanations (SHAP) Lundberg et al. (2017) to
interpret model predictions.

We selected two test points, one from the early degra-
dation stage and one from the late degradation stage, to
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Table 5 Comparison with SOTA (PRONOSTIA)

Bearing Model 100Hz4kN 100Hz4.2kN 100Hz5kN
MSE MAE Score MSE MAE Score MSE MAE Score
Bearing1 CARLE 0.00017  0.00890  74.451 0.00687  0.06874  37.435 0.03073 0.15232 24.860
CNN-LSTM  0.00060  0.01944 4444265 0.20664  0.39369  249.752 0.01941 0.12100 197.559
CABILSTM  0.00130  0.02515  6380.369  0.01075  0.08844  477.703 0.02536 0.13877 281.832
MSIDIN 0.00055  0.01640  1488.338  0.00720  0.07223  156.422 0.03786 0.17235 88.091
Bearing2 CARLE 0.00289  0.04268  32.028 0.00406  0.05340  25.583 0.04126 0.17514 54.820
CNN-LSTM  0.01822  0.10301  322.214 0.09584  0.26255  340.356 0.06594 0.22073 412.641
CABILSTM  0.01010  0.08341  602.274 0.00706  0.06948  1421.654  0.02629 0.14069 1623.838
MSIDIN 0.00643  0.06490  159.866 0.00403  0.05156  154.332 0.04196 0.17951 330.132
Bearing3 CARLE 0.00029  0.01312  70.194 0.00831  0.07488  80.114 0.141255 0.17514 55.231
CNN-LSTM  0.00033  0.01294  1834.090  0.17432  0.34082  1312.410  1.078112 0.845026  150.869
CABILSTM  0.00094  0.02538  5860.680  0.01240  0.09776 ~ 3550.281  2.1872909  1.20955 233.210
MSIDIN 0.00049  0.01723  1000.680  0.00606  0.06360  530.557 0.159579 0.355762  64.344
Bearing4 CARLE 0.00052  0.01635  39.394 0.01035 0.07616  41.840 - - -
CNN-LSTM  0.00237  0.03209  496.519 0.02068  0.12315  343.611 - - -
CABILSTM  0.00268  0.04036  809.504 0.01279  0.09542  490.663 - - -
MSIDIN 0.00134  0.02676  228.168 0.01029  0.08145  132.623 - - -
Bearing5 CARLE 0.00264  0.03956  79.403 0.00711  0.06936  102.632 - - -
CNN-LSTM  0.00885  0.07636  1135.705  0.08058  0.23612  951.493 - - -
CABILSTM  0.00999  0.08285  2605.018 0.01398  0.10261  3279.224 - - -
MSIDIN 0.00605  0.06274  442.709 0.00878  0.07688  448.584 - - -
Bearing6 CARLE 0.02014  0.12283  110.142 0.07713  0.23869  27.673 - - -
CNN-LSTM  0.03497  0.13915  1099.476  0.20729  0.39659  332.571 - - -
CABILSTM  0.03064  0.15598  2633.624  0.03074  0.15201  447.319 - - -
MSIDIN 0.05942  0.20851  619.222 0.03314  0.15922  106.045 - - -
Bearing7 CARLE 0.00799  0.06877 112.334 0.00495  0.06176  13.302 - - -
CNN-LSTM  0.03480 0.13173  878.371 0.06695  0.18207  63.732 - - -
CABILSTM  0.01221  0.08969  1799.508  0.00929  0.08194  166.860 - - -
MSIDIN 0.00905  0.07806  362.584 0.00355  0.05256  33.425 — — —

Note: Bold values indicate the minimum MSE, MAE, and Score for each bearing—condition combination

examine which features contribute most during fault devel-
opment. Figure 12(a, ¢) shows local explanations for XJTU
and PRONOSTIA. In the early stage, o, played the most
significant role in predictions, followed by k,,. This suggests
that early degradation is primarily reflected in increased
vibration variability and subtle distributional changes such
as heavier tails. In practice, these effects correspond to small
surface defects or early spalls on the bearing raceway that
disturb the signal but do not yet dominate its frequency
content.

As degradation progressed, the influence of o and u
increased substantially, with & becoming the second most
important feature. These variables capture more pronounced
shifts in the vibration component and distributional asym-
metry, which in real-world terms correspond to advanced
fault development. At this stage, cracks expand, spalls
deepen, and defect impacts become stronger and more
asymmetric, producing larger and more irregular vibra-
tions that are easier to isolate. To generate global insights,
local explanations were aggregated to identify the vibra-
tion characteristics most critical to bearing degradation and

@ Springer

RUL estimation. Results (Fig. 12b, d) show that both the
XJTU-SY and PRONOSTIA models rely heavily on o, a
measure of signal variability. This finding aligns with the
physics of bearing failure, where increased variability often
signals instability caused by defects such as looseness, con-
tamination, or misalignment. The models also prioritize
fa components, which capture dominant frequency shifts
associated with localized faults such as inner and outer race
cracks, spalling, or lubrication deficiencies. In contrast, A
contributes minimally, likely because fragmenting signals
into shorter time windows reduces sensitivity to this global
feature.

SHAP analysis (Fig. 13) confirms these findings and adds
nuance. o has the largest absolute impact, indicating that
overall o is the most reliable predictor of degradation. fy
components follow closely, reflecting the model’s ability to
capture fault-specific signatures. E features also contribute
significantly, linking directly to failure mechanisms such
as spalling progression, crack propagation, and lubrica-
tion breakdown. By contrast, 4 remains the least influential
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Fig. 12 LIME explanation for a XJTU-SY; b for PRONOSTIA

feature, confirming that short window fragmentation reduces
its predictive power.

This detailed feature-level interpretation shows that
CARLE not only produces accurate RUL predictions but
does so in a way that reflects the underlying physical pro-
cesses of bearing degradation, increasing both trust and
applicability in high-risk industrial settings.

5 Conclusion

This research proposes a comprehensive RUL estimation
system for rolling-element bearings. The system comprises
three key components: a compact time—frequency feature
extraction framework, an Al framework (CARLE), and XAI
explanations. The feature extractor framework includes a
complete algorithm to transform non-stationary vibrational
signals into a set of time—frequency features using CWT. It
also incorporates a Gaussian noise filter to eliminate signal

Feature Contribution (%)

perturbations and short-term fluctuations. The CARLE Al
framework comprises four blocks: Res-CNN captures spa-
tial degradation trends from the input feature set; Res-RNN
captures temporal degradation trends, learning long-term
time dependencies; Linear block identifies patterns within
these dependencies to produce a logit vector; finally, RFR
predicts the final RUL. This ensemble approach, combin-
ing deep learning and traditional machine learning meth-
ods, enhances robustness and generalization, allowing the
system to adapt effectively from one working condition
to unseen conditions. We evaluated the trustworthiness
of the Al framework using aggregated LIME and SHAP.
The analysis revealed that CARLE heavily relies on o fea-
tures, which indicate that unstable faults such as looseness
or contamination cause erratic behavior. The analysis also
revealed that both models heavily rely on fg, which is an
indicator of localized defects, including inner and outer race
cracks, looseness, and lubrication failures. Additionally,
SHAP suggests that £ features are also important, as they
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a) Global Feature Importance (SHAP - XJTU-SY)
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Fig. 13 SHAP explanation for a XJTU-SY; b for PRONOSTIA

indicate mechanical stress, friction, and surface defects.
Other factors contribute but are less significant, confirming
the system’s reliability. We validated the proposed frame-
work using the XJTU-SY and PRONOSTIA benchmark
datasets.

5.1 Future work

While the findings of this research are promising, there
is still room for improvement. We observed that CARLE
struggles with early fault detection (see Fig. 9(a(xii-xiii),
b(xvii))). Early degradation detection could be improved
by incorporating a physics-guided loss to better capture
subtle changes in the initial stages of degradation. Cross-
domain validation experiments indicate that further hyper-
parameter tuning could enhance CARLE’s generalization
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performance. Another possible mitigation is to incorporate
domain-adaptive training or fine-tuning on the target dataset
to better capture domain-specific label distributions. Fur-
thermore, in real-world scenarios, run-to-failure datasets
are often unavailable. Implementing CARLE in a transfer
learning configuration with incomplete run-to-failure data
is also a promising direction for future research.
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Appendix

A Preliminaries

In this section, we provide an overview of some building
blocks of our proposed framework.

A.1 Gaussian filter

The Gaussian filter G(z) is a smoothing filter commonly
used to reduce noise, smooth data, and extract trends from
non-stationary signals, which are crucial in predicting the
RUL. It applies a weighted averaging operation to the sig-
nal, ensuring that values closer to the center of the filter
contribute more to the result than those farther away. The
mathematical expression of the Gaussian function is given

_d_
e 202

(17)

A /2#03

where x4 is the distance from the center of the filter. o is
the standard deviation of the Gaussian distribution, which
controls the width of the Gaussian curve and determines the
degree of smoothness.

A.2 Continuous wavelet transform

The Continuous Wavelet Transform (CWT) is a powerful
mathematical tool that decomposes a time-varying signal

Fig. 14 Structure of the LSTM

Cell

into highly localized oscillations called wavelets, provid-
ing better time—frequency analysis. The CWT uses basis
functions that are scaled and shifted versions of the time-
localized wavelet, enabling the creation of a time-frequency
representation of a signal with excellent localization in both
time and frequency. The mathematical expression of the
CWT is as follows:

T(a,b) = /O:o Ity (tab) dt

where T'(a,b) represents the wavelet coefficients at scale
a and translation b, I(t) represents the nonstationary sig-
nal, and v (t) represents the mother wavelet function. We
selected the Morlet wavelet Farge (1992) as the mother
wavelet for time-frequency representation (TFR) extraction
due to its similarity to the bearing impulse response Zhu
et al. (2018) and its favorable trade-off between time and
frequency resolution. In particular, its frequency resolution
improves at higher values of a, while the time resolution
improves at lower values Lin and Liangsheng (2000). The
Morlet wavelet is defined as a sinusoidal function modu-
lated by a Gaussian envelope with a central frequency f.
and is given by:

(18)

Y(t) = e F et/ (19)

A.3 Long Short-Term Memory (LSTM)

The LSTM network is a class of deep recurrent networks
designed to capture long-term time dependencies from data.
LSTM utilizes specialized gates, i.e., an input gate I, a

network
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forget gate F}, and an output gate O, to regulate the flow of
information, allowing selective retention and forgetting of
information. This ability makes LSTM ideal for modeling
time series data that exhibit long-term dependencies such as
the gradual degradation of rolling element bearings, provid-
ing a more accurate RUL estimation Hochreiter (1997). The
structure of an LSTM network is shown in Fig. 14, and the
output of an LSTM network can be mathematically mod-
eled as:

Cy = ¢(Wg[H;—1,X¢] + by)
I = o(W;[Hy—1,X¢] +by)
Fy = o(We[He1,Xy] + by)
O = U(Wo[thXt} +by)
S:=COXi +Si-1 0 F,
H, =0, 0 ¢(S:)

Ht :./\/’./\/’(It,Htfl) = (20)

A.4 Random forest regressor

Random Forest Regression (RFR) is a supervised learning
algorithm that employs an ensemble learning method for
regression tasks based on the bagging technique. In RFR,
the trees operate in parallel, meaning that there is no interac-
tion between them during the training process. Each tree is
trained on a random subset of the features, and the final pre-
diction is obtained by averaging the outputs of all the trees
Segal (2004). We chose RFR for its accuracy, robustness,
and ability to handle nonlinear relationships effectively in
data, making it particularly suitable for RUL estimation,
where complex interactions and temporal patterns are cru-
cial. A schematic diagram of RFR is shown in Fig. 15.

Fig. 15 Structure of the RFR
algorithm

Result 1

Table 6 Hyperparameter comparison of CARLE (XJTU-SY vs PRO-

NOSTIA)
Block Hyperparameter XJTU-SY PRONOSTIA
Res-CNN CNN Layers 4 4
CNN Filters [256, 256,128, [64, 64,32,
64] 32]
Kernel Sizes [3,3,2,2] [3,3,2,2]
Padding Same Same
Regularization (\) 0.005 0.005
Activation ReLU ReLU
Pooling Size 1 1 (Max-
(MaxPoolinglD) Pooling1D)
Residual Applied Applied
Connections
Multi-Head 8 Heads, 64 8 Heads, 64
Attention Dim Dim
Res-LSTM LSTM Layers 2 2
LSTM Units [64,64] [64,64]
Statefulness False False
Return Sequences  True True
Residual Applied Applied
Connections
Multi-Head 8 Heads, 64 8 Heads, 64
Attention Dim Dim
Flatten Layer Applied Applied
Linear Linear Layers 3 3
Linear Units [128, 64, 32] [64, 48, 32]
Random No. of trees 800 800
Forest
Regressor
(RFR)

B Implementation

In this section, we provide the hyperparameters for both
XJTU-SY and PRONOSTIA and the training regularization
and optimizations that we use in our implementation.

Logit Vector

Result 2 Result N

N Average |«
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RMSE and Validation RMSE over Epochs (XJTU-SY)
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Fig. 16 Training statistics of CARLE (XJTU-SY)

B.1 Training setup

We trained our CARLE on an Intel Core i5-7200U with
16 GB RAM and no GPU. The model was implemented in
Python 3.10 using Tensorflow 2.18. Due to computational
limitations and to make training efficient, we applied various
optimizations to improve training efficiency. To ensure that

MAE and Validation MAE over Epochs (X]TU-SY)

— MAE
-~-~ Validation MAE

0.20

0.18 -

0.16

w 0141

0.12 1

0.10 1

0.08

the model converges to the best possible solution despite
hardware constraints, we incorporate several callbacks:
ResetStateCallback to reset model states between epochs,
EarlyStopping to halt training if validation loss stagnates for
multiple epochs, ReduceLROnPlateau to adjust the learn-
ing rate on MSE dynamically, and ModelCheckpoint to save
the best training weights. These optimizations collectively
enhance both training efficiency and model performance.

Require: Features vector (Iy,), RUL labels (Y), CARLE: f(x,w) — y, Loss: L(y, §) — R, batch size k, Number of

trees (Nrees)
: Initialize weights w

1

2: lpmin < 00

3: Initialize empty forest: Trees < {}

4: procedure DEEP NEURAL NETWORK
5: fore=1...maxgpocu do

6: fori=1...[¢]do

7 (2, y) is the batch size of k from (I,,Y")
8: W wp_q — ﬁ%

9: end for
10: Compute loss metrics:
1 le =V (y—9)°
12: mae = %ZLI lyi — il
13: if [. < i, then
14: lmin <~ l(’.
15: Whest < We
16: end if
17: end for

18: Compute Logit vector: I;, <— CARLE(Iy,)
19: end procedure
20: procedure RANDOM FOREST REGRESSION

> Root mean square prop

> Root mean square error
> Mean absolute error

> Output from CARLE

21: fore =1...Npccs do

22: Initialize decision tree T, with maz feqs

23: Train T¢ on (110, Y)): Te < fit((11v,Y))

24: Add trained tree to forest: Trees <— Trees U {T,}

25: end for R

26: Compute training predictions: Y Ml Sorerees To (1)
27:  Compute loss metrics: o

280 MSE= /13" (yi— )2
29 MAE =137 |y — 4l
30: it MSE < I, then

31: lmin < MSE
32: Bestporest < Trees
33: end if

34: rul <Y
35: end procedure
36: return Wyess, Best porest, rul

> Root mean square error

> Mean absolute error

> Output from Random Forest

Algorithm 2 Training and Testing of CARLE
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RMSE and Validation RMSE over Epochs (PRONOSTIA)
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Fig. 17 Training statistics of CARLE (PRONOSTIA)
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Fig. 18 Processing Time Analysis (XJTU-SY vs. PRONOSTIA)

B.2 Training and testing of CARLE

The training and testing procedure for CARLE involves
two phases: training the deep neural network and training
the random forest regression model. During the first phase,
the model is optimized via batch updates and the MSE loss
function to learn the relationships between the input fea-
tures and RUL labels in a supervised manner. The output,
a logit vector, is then used to train an RFR consisting of
multiple decision trees. The MSE and MAE performance
metrics are used throughout the training process to evaluate
and select the best model. The trained neural network and
RFR are applied to unseen data to predict the RUL during
testing. The complete algorithm is detailed in Algorithm 2,
and the model parameters for XJTU-SY and PRONOSTIA
are detailed in Table 6. The training statistics for XJTU-SY
and PRONOSTIA are provided in Figs. 16 and 17, respec-
tively Time processing time analysis for both XJYU-SY
and PRONOSTIA datasets are provided in Fig. 18. Both
achieved nearly identical training and inference time in a
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moderate training setup. On low-end hardware, these pro-
cessing times suggest that while training may be slower, the
inference step, critical for real-time localized prognostics,
remains feasible, as the model’s small size and low compu-
tational complexity enable fast forward passes even without
high-end resources.
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